

Farmaci antidiabetici ed endpoint cardiovascolari negli studi clinici

Paolo Falasca UOC di Medicina interna Ambulatorio di Endocrinologia e Diabetologia Ospedale Frascati - Marino Il dr. Paolo FALASCA dichiara di aver ricevuto negli ultimi due anni compensi o finanziamenti dalle seguenti Aziende Farmaceutiche e/o Diagnostiche:

- Sanofi
- Lifescan
- NovoNordisk
- Eli Lilly
- Takeda
- Boehringer Ingelheim

Over 50% of Diabetes-associated Deaths Are Attributable to CV Disease

Data source: USA Centers for Disease Control and Prevention National Vital Statistics Reports for total deaths in 2009 by primary cause of death, scaled to 2012 using the annual diabetes population growth rate from 2009 to 2012 for each age, sex, and race/ethnicity group CV, cardiovascular ADA. *Diabetes Care* 2013;36:1033–1046

Cardiovascular Disease Complications of Type 2 Diabetes

Heart Failure: The frequent, forgotten and often fatal complication of diabetes

Table 1—Epidemiology of heart failure in diabetic patients

- HF is two times as common in diabetic men and five times as common in diabetic women as in age-matched nondiabetic subjects.
- About 12% of type 2 diabetic subjects have established HF.
- About 3.3% of type 2 diabetic subjects develop HF each year.
- Elderly diabetic subjects have a 1.3-fold greater risk of developing HF than nondiabetic subjects.
- Prevalence of HF in elderly diabetic subjects is 39%.
- 1% rise in HbA_{1c} is associated with a 15% increased risk of HF in elderly diabetic patients.
- Diabetic patients account for 25% of all patients enrolled in large HF trials.

Le prime 10 diagnosi in caso di ricovero ordinario in funzione del sesso (% ricoverati/diabetici con almeno un ricovero nell'anno)⁷

Osservatorio ARNO Diabete Il profilo assistenziale della popolazione con diabete Rapporto 2015

Bullet point

- ✓ Il ruolo del trattamento intensivo (vecchi trials)
- ✓ I nuovi trials (SAVOR, TECOS, ELIXA)
- ✓ I «game changer» (EMPA-REG, LEADER, SUSTAIN6)
- ✓ Il futuro (CANVAS, EXCEL, DECLARE, etc)

Complex relationship be

Current evidence does not support intensive glycaemic control for reducing CV risk

Study	Question	Conclusion
ACCORD	Does a intensive therapy targeting HbA1c < 6.0% versus 7.0–7.9 % reduce CVD risk in middle-aged/older patients with high CV risk?	NO – Intensive glycaemic control had non-significant reduction in CV events (HR 0.9, $p = 0.16$); may increase mortality (HR 1.22, $p = 0.04$). Increased risk of hypoglycaemia
ADVANCE	Are micro- and macrovascular events reduced by intensive glucose control (HbA _{1c} \leq 6.5%) compared with standard therapy?	NO – Intensive glycaemic control had no effect on CV events (HR 0.94, $p = 0.32$), but did reduce microvascular events (HR 0.86, $p < 0.01$). Increased risk of hypoglycaemia
VADT	Does intensive glycaemic control affect CVD risk compared with standard therapy in older male patients with T2DM?	NO – Intensive control has no impact on CV events (HR 0.88, $p = 0.14$). Increased risk of hypoglycaemia
UKPDS	Does intensive glucose control with SU or insulin in newly diagnosed patients with T2DM provide any benefit?	YES – Early intensive glycemic control in newly diagnosed patients reduces long-term CV risk (myocardial infarction RR 0.85, $p = 0.014$)

ACCORD Study Group. N Engl J Med. 2008;358: 2545–2559; ADVANCE Collaborative Group. N Engl J Med. 2008;358:2560–2572; Duckworth W, et al. N Engl J Med. 2009;360:129–139; Holman RR, et al. N Engl J Med. 2008;359:1577–1589.

Intensive glycaemic control may reduce risk of myocardial infarction

Meta-analysis of ACCORD, ADVANCE, VADT and UKPDS suggests intensive glucose control reduces the risk of myocardial infarction by 15%

History of glucose-lowering therapy and CV scares

1. Nissen SE. Ann Intern Med. 2012;157:671–672; 2. Nissen SE, et al. JAMA. 2005;294:2581–2586; 3. Nissen SE, et al. N Engl J Med. 2007;356:245–271; 4. ACCORD Study Group. N Engl J Med. 2008;358:2545–

Regulatory requirements for CV outcome data

FDA: Guidance for industry (Dec 2008) Diabetes Mellitus: Evaluating Cardiovascular Risk in New Antidiabetic Therapies in Type 2 Diabetes¹

'To establish the safety of a new antidiabetic drug to treat Type 2 Diabetes, the sponsors should demonstrate that the therapy will not result in an unacceptable increase in CV risk'

- Important CV events should be analysed
- High-risk population to be included
- Long term data required (≥ 2 years)
- Prospective adjudication of CV events by an independent committee

EMA: Guideline on clinical investigation of medicinal products in the treatment of diabetes mellitus (Sept 2012 – final)²

'A fully powered cardiovascular safety assessment, e.g. based on a dedicated CV outcome study, should be submitted before marketing authorization whenever a safety concern is intrinsic in the molecule/mechanism of action or has emerged from preclinical/clinical registration studies; e.g.,

- Increase in LDL
- Increase in triglycerides
- Increase in heart rate
- Increase in body weight
- Increase in incidence of MACE
- Increase in incidence of heart failure'

1. FDA Guidance for Industry.

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071627.pdf. 2. EMA Guidelines.

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/06/WC500129256.pdf.

Regulatory requirements for CV outcome data

FDA: Guidance for industry (Dec 2008) Diabetes Mellitus: Evaluating Cardiovascular Risk in New Antidiabetic Therapies in Type 2 Diabetes¹

Submission with NDA:

- Meta-analysis of important CV events across controlled Phase II and III studies to calculate the risk ratio
- If the upper bound of the two-sided 95% CI for the estimated risk ratio is:
 - > 1.8: <u>inadequate</u> data to support approval
 - 1.3–1.8,*: postmarketing CV trial(s) <u>needed</u> to show definitively < 1.3
 - < 1.3,*: postmarketing CV trial(s) generally <u>not</u> <u>necessary</u>
 - * With a reassuring point estimate
- Studies included in the meta-analysis must be appropriately designed and include patients at higher CV risk so that sufficient endpoints are obtained to allow a meaningful estimate of risk

EMA: Guideline on clinical investigation of medicinal products in the treatment of diabetes mellitus (Sept 2012 – final)²

Submission with the MAA:

- Integrated safety analysis (meta-analysis) with specific focus on CV safety
- A fully powered CV safety assessment, submitted before marketing authorization whenever a safety concern is intrinsic in the molecule/mechanism of action or has emerged from preclinical/clinical registration studies
- Long-term CV outcome trials may be requested if there is an indication of increased risk

1. FDA Guidance for Industry.

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071627.pdf. 2. EMA Guidelines. http://www.ema.europa.eu/docs/en GB/document library/Scientific guideline/2012/06/WC500129256.pdf.

Regulatory requirements for CV outcome data: Meta-analysis* limits and outcome trial requirements

*Studies included in the meta-analysis must be appropriately designed and specifically include patients at higher risk of CV

events to obtain sufficient endpoints to allow a meaningful estimate of risk.

1. FDA Guidance for Industry. http://www.fda.gov/downloads/Drugs/Guidance

ComplianceRegulatoryInformation/Guidances/ucm071627.pdf.

CV safety trials are being conducted for each compound within the newer classes

Summary of CV outcomes trials with DPP4 inhibitors

	SAVOR-TIMI 53 ¹	EXAMINE ²	TECOS ³	CAROLINA ^{®4}	CARMELINA ^{®5}
Intervention	Saxagliptin/ placebo	Alogliptin/ placebo	Sitagliptin/ placebo	Linagliptin/ glimepiride	Linagliptin/ placebo
Main inclusion criteria	History of or multiple risk factors for CVD	ACS within 15– 90 days before randomisation	CVD	≥ 2 specified traditional CV risk factors or manifest CVD	High risk of CV events (e.g. albuminuria, prior CVD)
No. of patients	16,492	5380	14,671	6041	8300
Primary outcome	3P-MACE	3P-MACE	4P-MACE	4P-MACE	4P-MACE
Key secondary outcome	Expanded MACE	4P-MACE	3P-MACE	3P-MACE	3P-MACE; renal composite
Target no. of events	1040 ⁶	650	1300	631	625 ⁷
Median follow-up (y)	2.1	1.5	3.0	6-7*	4*7
Estimated completion	Completed	Completed	Completed	2018 ⁸	2018

Summary of completed DPP4 inhibitor CVOTS

*Upper boundary of 1-sided repeated CI.

1. Scirica et al. N Engl J Med 2013;369:1317–26. 2. White et al. N Engl J Med 2013;369:1327–35.

3. Green et al. N Engl J Med 2015; DOI: 10.1056/NEJMoa1501352.

TECOS study

SAVOR-TIMI 53 Saxagliptin and Cardiovascular Outcomes in T2DM Patients

End Point	Saxagliptin (N=8280)	Placebo (N=8212)	Hazard Ratio (95% CI)	P Value
	no.	(%)		
Cardiovascular death, myocardial infarction, or stroke: primary efficacy end point	613 (7.3)	609 (7.2)	1.00 (0.89–1.12)	0.99
Cardiovascular death, myocardial infarction, stroke, hospitalization for unstable angina, heart failure, or coronary revascularization: secondary efficacy end point	1059 (12.8)	1034 (12.4)	1.02 (0.94–1.11)	0.66
Death from any cause	420 (4.9)	378 (4.2)	1.11 (0.96-1.27)	0.15
Death from cardiovascular causes	269 (3.2)	260 (2.9)	1.03 (0.87-1.22)	0.72
Myocardial infarction	265 (3.2)	278 (3.4)	0.95 (0.80-1.12)	0.52
Ischemic stroke	157 (1.9)	141 (1.7)	1.11 (0.88–1.39)	0.38
Hospitalization for unstable angina	97 (1.2)	81 (1.0)	1.19 (0.89–1.60)	0.24
Hospitalization for heart failure	289 (3.5)	228 (2.8)	1.27 (1.07-1.51)	0.007
Hospitalization for coronary revascularization	423 (5.2)	459 (5.6)	0.91 (0.80-1.04)	0.18
Doubling of creatinine level, initiation of dialysis, renal transplantation, or creatinine >6.0 mg/dl (530 μ mol/liter)	194 (2.2)	178 (2.0)	1.08 (0.88–1.32)	0.46
Hospitalization for hypoglycemia	53 (0.6)	43 (0.5)	1.22 (0.82–1.83)	0.33

EXAMINE events by history of HF

	All patients		History of heart fail	ure at baseline	No history of heart failure at baseline	
	Alogliptin (n=2701)	Placebo (n=2679)	Alogliptin (n=771)	Placebo (n=762)	Alogliptin (n=1930)	Placebo (n=1917)
Cardiovascular death and hospital admission for heart failure	201 (7-4)	201 (7.5)	107 (13·9)	120 (15-7)	94 (4·9)	81 (4·2)
Hazard ratio (95% CI)	1.00 (0.82-1.21)		0.90 (0.70-1.17)		1.14 (0.85-1.54)	
p value	0.976		0.446		0.337	
p _{interaction} for treatment and history of heart failure		-	0.221			ů.
Cardiovascular death*	112 (4-1)	130 (4.9)	55 (7·1)	69 (9.1)	57 (3.0)	61 (3.2)
Hazard ratio (95% CI)	0.85 (0.66-1.10)		0.77 (0.54-1.09)		0.92 (0.64-1.32)	
p value	0.212		0.141		0.643	
p _{interaction} for treatment and history of heart failure			0.508			÷
Hospital admission for heart failure	106 (3.9)	89 (3-3)	63 (8·2)	65 (8.5)	43 (2.2)	24 (1.3)
Hazard ratio (95% Cl)	1.19 (0.90-1.58)		1.00 (0.71-1.42)		1.76 (1.07-2.90)	
p value	0.220		0.996		0.026	
p _{interaction} for treatment and history of heart failure			0-068			-

Summary of CV outcomes trials with GLP1 receptor agonists

	Intervention	Main inclusion criteria	No. of patients	Primary outcome	Key 2° outcome	Target no. of events	Estimated follow-up	Estimated completion
ELIXA ^{1,2}	Lixisenatide/ placebo	History of ACS	6068	4P-MACE	Expanded MACE	844	2.1 years median	Completed
LEADER ^{®3}	Liraglutide/ placebo	Vascular disease, or risk factors, or CRF, or CHF	9340	3P-MACE	Expanded MACE	> 611	Up to ~5 years	Completed
SUSTAIN-6 ^{™4}	Semaglutide/ placebo	Evidence of CV disease	3297	3P-MACE	Expanded MACE	Not specified	Up to ~3 years	Completed
EXSCEL⁵	Exenatide ER*/ placebo	No CV criteria specified	14,000	3P-MACE	All-cause mortality; HHF	Not specified	Up to ~7.5 years	Apr-18
REWIND ⁶	Dulaglutide/ placebo	Pre-existing vascular disease or ≥2 CV risk factors	9622	3P-MACE	Microvascular composite	^r Not specified	Up to ~6.5 years	Apr-19
HARMONY OUTCOMES ⁷	Albiglutide/ placebo	Established CVD	9400	3P-MACE	Expanded MACE	Not specified	3–5 years	May-19

*Once weekly.

1. NCT01147250. 2. Bentley-Lewis et al. Am Heart J 2015;0:1-8.e7. 3. Marso et al. Am Heart J 2013;166:823-30.e5. 4. NCT01720446.

5. NCT01144338. 6. NCT01394952. 7. NCT02465515

ELIXA: Primary and Secondary Outcomes

CV Death, Nonfatal MI, or Nonfatal Stroke

 Subgroup interactions were analysed, but none were significant

HF Hospitalization

Pfeffer MA, et al. N Engl J Med. 2015;373:2247-2257.

LEADER: Primary Outcome*

*3-point MACE consisting of CV death, nonfatal MI, or nonfatal stroke

Marso SP, et al. N Engl J Med. 2016;375:311-322. Reprinted with permission from Massachusetts Medical Society.

LEADER: CV Death

Marso SP, et al. N Engl J Med. 2016;375:311-322. Reprinted with permission from Massachusetts Medical Society.

LEADER: Hospitalization for HF

Marso SP, et al. N Engl J Med. 2016;375:311-322. Reprinted with permission from Massachusetts Medical Society.

LEADER: Time to First Renal Event*

*Macroalbuminuria, doubling of serum creatinine, ESRD, or renal death

Mann JF. ADA 76th Scientific Sessions, Session 3-CT-SY24. June 13 2016, New Orleans, LA.

GLP-1 RA CVOTs: A Comparison^[a]

ELIXA^[b]

CV death, nonfatal MI, nonfatal stroke, or hospitalization for UA

LEADER^[c]

CV death, nonfatal MI, or nonfatal stroke

a. Buse JB. ADA 76th Scientific Sessions, Session 3-CT-SY24. June 13 2016, New Orleans, LA.

b. Pfeffer MA, et al. N Engl J Med 2015;373:2247-2257

c. Marso SP, et al. N Engl J Med. 2016;375:311-322.

Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes

Summary of CV outcome trials with SGLT2 inhibitors

	EMPA-REG OUTCOME ^{®1}	CANVAS ²	CANVAS-R ³	CREDENCE ⁴	DECLARE- TIMI 58⁵	Ertugliflozin CVOT ⁶
Interventions	Empagliflozin/ placebo	Canagliflozin/ placebo	Canagliflozin/ placebo	Canagliflozin/ placebo	Dapagliflozin/ placebo	Ertugliflozin/ placebo
Main inclusion criteria	Est. vascular complications	Est. vascular complications or ≥ 2 CV risk factors	Est. vascular complications or ≥ 2 CV risk factors	Stage 2 or 3 CKD + macroalbuminuria	High risk for CV events	Est. vascular complications
No. of patients	7034	4339	5700	3627	17,150	3900
Primary outcome	3P-MACE	3P-MACE	Progression of albuminuria	ESKD, S-creatinine doubling, renal/CV death	3P-MACE	3P-MACE
Key secondary outcome	4P-MACE	Fasting insulin secretion, progression of albuminuria	Regression of albuminuria, change in eGFR	4P-MACE + HHF	4P-MACE + HHF + revascularisation	4P-MACE
Target no. of events	691	≥ 420	TBD	TBD	1390	TBD
Estimated median FU	~3 years	6-7 years	3 years	~4 years	4–5 years	5–7 years
Estimated completion	Completed	Apr 2017	2017	2019	2019	2021

Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes

N Engl J Med 2015;373:2117-28.

EMPA-REG OUTCOME: Empagliflozin Improved CV Outcomes in Patients with T2DM

Outcome	Patients with event / analyzed		Hazard	95% CI		P value
	Empagliflozin	Placebo	Tutio			
3-point MACE	490/4687	282/2333	0.86	0.74, 0.99*	•	0.0382
CV death	172/4687	137/2333	0.62	0.49, 0.77		<0.0001
Nonfatal MI	213/4687	121/2333	0.87	0.70, 1.09		0.2189
Nonfatal stroke	150/4687	60/2333	1.24	0.92, 1.67	• • ••	0.1638
Hospitalization for heart failure	126/4687	95/2333	0.65	0.50, 0.85		0.0017
				0	,3 0,5 1,0 2,	0

Primary End Point: 3P-MACE*

Cumulative incidence function. MACE=Major Adverse Cardiovascular Event; HR=hazard ratio.

* CV death, nonfatal MI, nonfatal stroke

+ Two sided tests for superiority were conducted (statistics of significance was indicated if P=0.0498)

3P-MACE* and 4-P MACE

	Patients with event/analysed						
	Empagliflozin	Placebo	HR	(95% CI)			P-value
3-point MACE	490/4687	282/2333	0.86	(0.74, 0.99)*			0.0382
CV death	172/4687	137/2333	0.62	(0.49, 0.77)			<0.0001
Non-fatal MI	213/4687	121/2333	0.87	(0.70, 1.09)			0.2189
Non-fatal stroke	150/4687	60/2333	1.24	(0.92, 1.67)	-	•	0.1638
4-point MACE	599/4687	333/2333	0.89	(0.78, 1.01)*		•	0.0795
			0	,25 (Favours e), <u>50 </u>	00 Favours	2,00 placebo

Cox regression analysis. MACE, Major Adverse Cardiovascular Event; HR, hazard ratio; CV, cardiovascular; MI, myocardial infarction *95.02% CI

EMPA-REG OUTCOME: Empagliflozin and CV Outcomes

Cardioprotective Results From EMPA-REG are Likely to be Unrelated to Glycemic Control

How Applicable Might the EMPA-REG Results Be To The General Population of Patients with T2DM?

17.9% of patients with T2DM had a first CV presentation

SGLT2 inhibitors modulate a range of factors related to CV risk Based on clinical and mechanistic studies

Inzucchi et al. Diab Vasc Dis Res 2015;12:90-100.

Super-fuel Hypothesis: Shift in Fuel Metabolism with SGLT2i

... by shifting to a more energy-efficient fuel: ketone bodies instead of fatty acids / glucose

The lesson of the cardiovascular outcome trials

- All trials on DPP4 inhibitors (SAVOR, EXAMINE, TECOS) have achieved the primary endpoint of safety. In the SAVOR study was observed an increase in hospitalizations for heart failure in patients treated with saxagliptin, despite not being observed an increase in death from CV causes. This has led to further analysis in observational studies and meta-analyzes that have finally concluded the effect neutrality of DPP4 inhibitors in risk of HF.
- The ELIXA study with lixisenatide showed neutrality on CV outcomes, no increase in the risk of hospitalizations for heart failure.
- The LEADER study with liraglutide showed superiority on CV outcomes, no increase in the risk of hospitalizations for heart failure.
- The EMPA-REG and LEADER trials support the use of empagliflozin or liraglutide in patients who have previous CV or MACE diseases
- So far between the two GLP1 RA evaluated in CV outcomes trial, only liraglutide and not lixisenatide showed a cardioprotective effect but before concluding that it is a specific drug effect is to assess differences in the population of patients between the two studies and design of these, waiting to have the results of ongoing trials of other GLP1 RA.
- Patients with renal impairment are those who have benefited most of the treatments with empagliflozin and liraglutide.

Conclusions

- FDA guidance from 2008 requests CV outcome trials (CVOTs) to demonstrate CV safety of all new glucose-lowering compounds¹
- CVOTs designed to assess impact of drugs on CV outcomes (MACE) vs placebo on top of usual care for glucose and CV risk factor management
 - Not designed to assess impact of differences between treatment arms in, for example, HbA_{1c} on CV outcomes
- Completed CVOTs in DPP4 inhibitor and GLP1 class report neutral or superior effects on CV outcomes confirming CV safety as defined by FDA²⁻⁶
- Ongoing CVOTs will provide further clarity on the CV safety of individual glucoselowering agents

- $1.\ FDA\ Guidance\ for\ Industry.\ http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071627.pdf.$
- 2. Scirica et al. N Engl J Med 2013;369:1317-26. 3. White et al. N Engl J Med 2013;369:1327-35.

^{4.} Zannad et al. Lancet 2015;385:2067-76. 5. Green et al. N Engl J Med 2015; DOI: 10.1056/NEJMoa1501352.

^{6.} Pfeffer et al. ADA, 8 Jun 2015, Boston, USA (oral presentation).

Comorbidities-driven treatment

6- 6	Normal or subclinical ENDOTHELIAL DYSFUNCTION	ESTABLISHED ATHERO- SCLEROSIS	ACUTE CORONARY SYNDROME	HEART FAILURE	
Stage I-II CKD eGFR 90-60 ml/min/1.73 m ²	Metformin ^a , Pioglitazone ^b DPP4-J ^{c-e} , GLP-1 RA ^f , SGLT2-I ^g , Insulin ^{1h} SUs ¹	Metformin, SGLT2-I ^g , GLP-1RA ^f , Pioglitazone ^b , DPP4- I ^{c-e} , Insulin ^h , Gliclazide ^k	Insulin ^m DPP4-I ^e , GLP-1RA ⁱ ,	SLGT2-I ⁹ DPP4-I ^{d,e} , GLP-1RA ^f , Insulin ^h	
Stage III CKD eGFR 59-30 ml/min/1.73 m ²	Metformin ² , Pioglitazone ^{3b} , SLGT2-I ⁴⁹ , GLP- 1RA ^f , DPP4-I ^{2c-e} , Gliclazide ^{2k} , Insulin ^h	Metformin ² , GLP- 1RA ¹ , SGLT2-I ⁴⁹ , Pioglitazone ^{3b} , DPP4-I ^{2c-e} , Insulin ^h , Gliclazide ^{2k}	Insulin ^m DPP4-I ^e , GLP-1RA ⁱ ,	SLGT2-I9 DPP4-I ^{d,e} , GLP-1RA ^f , Insulin ^h	
Stage IV CKDPioglitazone3,Pioglitazone3,eGFR 29-15DPP4-l2,DPP4-l2,ml/min/1.73 m2Insulin2Insulin2		DPP4-I ² , Insulin ²	DPP4-1 ² , Insulin ²		
Stage V CKD eGFR <15 ml/min/1.73 m ²	Pioglitazone ³ , DPP4-I ² , Insulin ²	Pioglitazone ³ , DPP4-I ² , Insulin ²	DPP4-I ² , Insulin ²	DPP4-l ² , Insulin ²	

Evidence of efficacy

Evidence of safety

Author consensus

Fig. 1 A treatment algorithm based on cardiac and renal co-morbidities and CVOTs. ¹To be used with caution because of the risk of hypoglycemia; ²consider dose reduction (except for linagliptin) and monitor eGFR frequently; ³preferred in the presence of marked insulin resistance; ⁴initiation of therapy currently not recommended. ^aUKPDS; ^bPROACTIVE trial; ^cSAVOR; ^dTECOS, ^eEXAMINE; ^fLEADER trial; ^gEMPA-REG Outcome trial; ^hORIGIN trial; ^kADVANCE; ^jELIXA; ^mDIGAMI 1

Grazie per l'attenzione!