

Diabete ed Etnie L'algoritmo farmacologico nelle varie etnie è sempre lo stesso?

Stefano Genovese

UO di Diabetologia, Endocrinologia e Malattie Metaboliche

Disclosure Statement

- Stefano Genovese has participated in clinical research, scientific advisory boards, served as a consultant or received honoraria for:
 - Abbott Diabetes Care
 - AstraZeneca
 - Boehringer Ingelheim
 - Bristol-Myers Squibb
 - Bruno Farmaceutici
 - Eli Lilly
 - Janssen
 - Lifescan
 - Menarini
 - Merck Sharp & Dohme
 - Novartis
 - Novo Nordisk
 - Sanofi
 - Takeda

Estimated number of people with diabetes worldwide and per region in 2015 and 2040 (20-79 years)

Top ten countries/territories for number of adults with diabetes

Proportion and number of people (20-79 years) living with diabetes who are undiagnosed, 2015

IDF region	Proportion undiagnosed	Number of undiagnosed people with diabetes
Africa	66.7%	9.5 million
Europe	39.3%	23.5 million
Middle East and North Africa	40.6%	14.4 million
North America and Caribbean	29.9%	13.3 million
South and Central America	39.0%	11.5 million
South-East Asia	52.1%	40.8 million
Western Pacific	52.1%	79.8 million
World	46.5%	192.8 million

Proportion (%) of people who died from diabetes before the age of 60

Increasing development and wealth is correlated with decreasing early mortality due to diabetes

* Only countries with adult populations greater than 10,000,000 were plotted.

Diabetes is more than a health issue and requires concerted policy action across many sectors

IDF 2010

IDF treatment algorithm for people with T2D

Lifestyle	measures			
Then	, at each step, if not to targ	et (generally HbA _{1c} <7.0%)		
Cons	ider first line			_
	Metformin		Sulphonylurea or α-glucosidase inhibitor	
Cons	ider second line			
	Sulphonylurea	Metformin (if not first line)	α-glucosidase inhibitor or DPP-4 inhibitor <i>or</i> thiazolidinedione	
Cons	ider third line			
	Basal insulin or pre-mix insulin	α-glucosidase inhibitor <i>or</i> DPP-4 inhibitor <i>or</i> thiazolidinedione	GLP-1 agonist	A1c <7%
Cons	ider fourth line			
Ļ	Basal + meal-time insulin	Basal insulin <i>, or</i> pre-mix insulin (later basal + meal-time)	Usual ap Alternat	pproach ive approach

IDF Treatment Algorithm for People with Type 2 Diabetes. Available at: <u>http://www.idf.org/treatment-algorithm-people-type-2-diabetes</u>. Last accessed October 2015.

The A1c and ABCD of glycaemia management in T2D: a physician's personalised approach

				At pres	entation			
			Mild hy	perglycaemia	Severe hy	perglycaemia	Add-on therapy to meth	ormin
Strategy	Glycaemic goal	Time frame to reach glycaemic goal	Definition	Type of intervention	Definition	Type of intervention	Principles in selecting interventions	Drugs excluded
ABCD	Individualised <6–8%	Individualised 3–12 months	A1c <9%	Lifestyle + metformin	A1c ≥9%	Insulin	Age; body weight; complications; diabetes duration	-

ABCD: age, body weight, complications and duration of disease

Diabetes treatment algorithm from the Diabetes Current Care Guideline. Working group set up by the Finnish Medical Society Duodecim and the Finnish Society of Internal Medicine

Glucose-lowering effect of differen Available at: <u>www.terveysportti.fi/xmedia/ccs/varhainen diabetes en.html</u>. Last accessed October 2015.

American Association of Clinical Endocrinologists (AACE) treatment guidelines

Progression of disease

*Order of medications listed are a suggested hierarchy of usage

**Based on data from Phase 3 clinical trials.

Available at: https://www.aace.com/publications/algorithm Last accessed October 2015.

Orientamenti per le moderne dinamiche clinico-assist

GIDM

Diabete e Ramadan: necessità di un intervento culturalmente orientato Diabetes and Ramadon: need for a culture CM12014;8(2):3-9 bitp://dc.doi.org/10.7175/cmi.c8i2.921 utan: need for a cultural action

INTRODUZIONE

La multietnia è una realtà in continua La numerita e una resta la comuna crescit. Le culture d'origine rivestono molta i and anadacione la consolutiona la creacita. Le cunture a origine mentono mora importanza nel condizionare le condotte, le autoration sector constantine e constante de échieste di cura e la disposibilità a deter-minane presente in tratte il 2006 del constante en iksueste su cura e su supportunata a steter-ninate terapie. In Italia, il 33% dei cittadini innare terape. In italia, il 33% dei cettadini on comunitari è di fede islamica, nunco ata accosto dei cetta di cetta cetta di cetta raddoppiato negli ultimi 10 anni [1] lausoppaus suga unan 140 aura 141. Le differenze religioze/culturali hanno un aurata inananana ada atakatat Le autoretuse rengano: cuturati tanno un ruolo importante nella gestione del diabete: it dinimus une i autorationari di diameteo. ruono importante neuta gestione dei diadecto il digiuno per i musulmani durante il Rama u agguno per i musuman aurance u rama-dan rappresenta un caso emblematico, vero e vana sportectura un cano cumentara o vece proprio banco di prova in termini terapeuto a chanactari anti proprio oanco coprova in termuni terapentoci e alimentari per gli operatori sanitari [2-4].

RAMADAN: INDUADRAMENTO CULTURALE

6

IR

GIORNALE ITALIANO di DIABETOLOGIA e METABOLISMO

Il mese di Ramadan è il nono del calen-darto istanico, e sacro al istan perce e su mese in cui fu rivelato il Corano come guida mese in cui fu rivelato il Corato come guida Par gli uomini e prova chiara di retta dire. ai rispettare che nella atagione estiva. In tu-zione e salvezzas (Sura II. v. 185). Si tratta to auesto. il endonte improvede la suprovede la suprov zione e surezzas (oura il, v. 165). or unita di un mese di purificizione, ricco di grazie, Annana il mola in voca dalla conteccióne di grazie, au un mese ai purmezzone, neco di grazie, durante il quale, in una delle sue ultime not-si disenso i ta sociata dell'assessa si como dal durante u quale, in una dene sue ultime not-ti dispari, la "notte del destino", le porte del cielo sono più dischiuse. acto sono put auscrituse. Il Corano stabilisce l'obbligo del digituto com transformativa di autorituto di autorituto. II Corano stabilisce lobbiligo del digiuno II pasto jóar, consumato al tramonto, argo (Sura II, v. 183) come atto basilare di culto presenta il momento della tottura del divito no. È caratterizzato da 3 nortate. La tottura del divito di successato da 3 nortate. La tottura del divito di successato da 3 nortate. La tottura del divito di successato da 3 nortate. La tottura del divito di successato da 3 nortate. La tottura del divito di successato de successato da 3 nortate. La tottura del divito di successato da 3 nortate. La tottura del divito di successato de successato

no è più importante il significato spirituale no e pu importante il significato spirituale di quello materiale: l'uomo obbedisce a un ai queno materiare: i uomo osocorace a un ordine divino, impara a tenere soto con-e-una : e-uni -k-e-tari Geiri a e-una tenere ordine divino, impara a tenere socio con-trollo i suoi desideri fisici e supera la sua romo i suoi uesuori msci e supera ta sua natura umana. Si abitua alla moderazione: thatura utmara, or annua ana turactaanac abbandonarsi senza freni anche a bisogni le, ancanuntarsi senza neni atazie a tonogitu se-citi, come il cibo e i rapporti sessatili, rende i'romo echiavo di obitudini a wonto. tuomo scuavo su annuami e vogue. Nel digiuno, il rico prova le ristrettezze / che il porero ha quotidianamente e tutta la vuonnaisi vius una comunicus, di suririno da consultà vire una comunicatione et tuta la comunità vire una comunicatione di spirito che

comunita vive una comunione su spanio sa aumenta il senso di fratellanza, di pazienza in senso di tratellanza di pazienza internazione di tratellanza di pazienza internazione di trategi anti autorenta a actos un sonetantea un pasaneta e di disciplina fra i musulmani. Tutti i mue ut anceptuta tra i masanatati. Tutut i mus sulmani che abitano l'emisfero nord e quello - 1 const to succestato de la constato trata della constitucionali della constituciona sumani cie aotano jemisero nora e questo sud hanto la possibilità, nel corso della loro sud hanno la Possibilità, nei corso decla noi cistenza, di digitinare in stagioni diverso, custoriza, di uggunare in magnan tanan Perché i mesi lunari sono alternativamento di no 30 diana Panna basare in tura di di Percipe i thesi ilitari sono autoritativanesis di 29 e 30 giorni e l'anno lunare in tutto è di e e antinesi sundici minerio simerio simerio a

554 grown, unaux grown in meno repetto a quello solare. Il Ramadan cade così in diverse ijucao autare: in namatani tate tota intervisio attagioni. In certi Paesi, durante l'imerno, le attagioni, attagione e e attagione di atagioni, in ceru ratos, ourante i interno, se giornate sono corte e fredde e il digiuno di ta rajectati vite india nagone vitera, ili tetto to questo, il credente intrarete la saggereza la nimenia a la minerizza la rel più ili di saggereza la to questo, a createme intrarcite la suggeora, a giustizia e la misericondia di Dio. Il digituto e suggeora da sugg generative en muercorran au 140. Il alguno deve essere preceduto dalla nijudo (inten-siona). Para la arguno (intenacre essere precentato tasta appor tasta zione). Dopo la pronuncia dell'intenzion -i internetta estiminare all'antenzion

5 CAPILLARIZZAZIONI NAZIONALI

per il formazione di 150 medici

Diabete e

INFORMAZIONI GENERALI

ATTESTATO ECM

Verrà spedito all'indirizzo di posta elettronica indicato sul modulo dopo aver effettuato le verifiche.

ATTESTATO DI PARTECIPAZIONE

Ai partecipanti verrà rilasciato l'attestato di partecipazione al termine dell'evento

COORDINATORI E RESPONSABILI SCIENTIFICI Natalia Visalli Coordinatore del Gruppo di Studio SID - AMD GISED Sergio Leotta

Coordinatore del Gruppo di Studio SID - AMD - ADI NUTRIZIONE E DIABETE

SEGRETERIA ORGANIZZATIVA

I&C srl Via Andrea Costa 202/6 - 40134 - Bologna Tel. +39 051.6144004 - Fax +39 051.6142772 @: giulia.delia@iec-srl.it

Gruppo di studio ADI-AMD-SID "Nutrizione e diabete'

MO ES

-

Diabete e relazioni transculturali

con il contributo non condizionato di

NOVARTIS PHARMACEUTICALS

EPIDIAR study:

il Ramadan aumenta il rischio

di episodi severi sia di ipoglicemia che di iperglicemia nel diabete 2

⁺Events requiring hospitalization in overall population with T2DM; ‡compared with previous months

* There was a 7.5 fold difference of hypoglycaemia in overall population fasting during Ramadan. For patients who fasted for > 15 days difference was, 6.7 fold

EPIDIAR = EPIdemiology of DIAbetes and Ramadan; T2DM = type 2 diabetes mellitus

¹Salti I, et al. Diabetes Care 2004;27:2306–11; ²Al-Arouj M, et al. Diabetes Care 2010;33:1895–902

Ramadan Fasting: A Study of Changes in Glucose Profiles Among Patients With Diabetes Using Continuous Glucose Monitoring

We have explored changes in glucose profiles of patients with type 2 diabetes in a prospective observational study using continuous glucose monitoring (CGM; Medtronic MiniMed CGMS Gold). This was performed for at least 3 consecutive days during Ramadan (2). Nonfasting CGM for the same length of time was obtained on each patient either before or after Ramadan. A mean CGM curve for all patients was obtained during and outside the Ramadan fasting period (3).

NADER LESSAN, MRCP, MD¹ HAYDAR HASAN, MD² MAHA T. BARAKAT, MRCP¹ Grande variabilità inter e intra individuale

correlata al momento della giornata, al tipo di alimenti introdotti, alle modifiche di terapia

DIABETES CARE, VOLUME 35, MAY 2012

CGMS in RAMADAN

Non Fasting

Fasting

Diabetes and Ramadan: Practical Guidelines

International Diabetes Federation (IDF), in collaboration with the Diabetes and Ramadan (DAR) International Alliance

April 2016

Diabetes and Ramadan Practical Guidelines

- Epidemiology of diabetes and Ramadan fasting
- Physiology of Ramadan
- Stratification of individuals with Diabetes before Ramadan
- Diabetes and Ramadan: a medico-religious perspective
- Pre-Ramadan education
- Ramadan Nutrition Plan (RNP) for patients with diabetes
- Management of diabetes during Ramadan
- Identifying and overcoming barriers to Guideline implementation
- Summary of the response of Egypt's Mofty to diabetes and Ramadan risk categories religious ruling (Arabic and English)

I farmaci

T2D treatment based upon pathophysiology

- Decrease insulin resistance (liver, skeletal muscle, adipose tissue)
- Re-establish an appropriate insulin secretion profile
 - Sufficient basal secretion
 - Appropriate post-prandial secretion (especially in the early phase after meal)
- Counteract lipotoxicity
- Decrease glucotoxicity

The pathophysiology of diabetes

Ipertensione & diabete: classi di farmaci negli USA nel corso degli ultimi 50 anni

Options for antidiabetic treatment

The ideal drug

- Efficacy
- Safety
- Other Clinical Advantages
- No/Few Adverse Effects
- Reasonable Cost/Value

Ramadan

Reviews/Commentaries/ADA Statements

COMMENTARY

Recommendations for Management of Diabetes During Ramadan

Update 2010

MONIRA AL-AROUJ, MD ¹
SAMIR ASSAAD-KHALIL, MD, PHD ²
JOHN BUSE, MD, PHD ³
Ibtihal Fahdil, md, phd ⁴
Mohamed Fahmy, md, phd ⁵
Sherif Hafez, md, facp ⁶
Mohamed Hassanein, FRCP ⁷

Mahmoud Ashraf Ibrahim, David Kendall, md⁹ Suhail Kishawi, md¹⁰ Abdulrazzaq Al-Madani, m Abdullah Ben Nakhi, md¹ Khaled Tayeb, md¹² Abraham Thomas, md¹³ Table 3—Recommended changes to treatment regimen in patients with type 2 diabetes who fast during Ramadan

M L	Before Ramadan	During Ramadan
	Patients on diet and exercise control	Consider modifying the time and intensity of physical activity; ensure adequate fluid intake
	Patients on oral hypoglycemic agents	Ensure adequate fluid intake
	Biguanide, metformin 500 mg, three times daily	Metformin, 1,000 mg at the sunset meal, 500 mg at the predawn meal
	TZDs, AGIs, or incretin-based therapies	No change needed
	Sulfonylureas once a day	Dose should be given before the sunset meal; adjust the dose based on the glycemic control and the risk of hypoglycemia
	Sulfonylureas twice a day	Use half the usual morning dose at the predawn meal and the usual dose at sunset meal
	Patients on insulin	Ensure adequate fluid intake
	Premixed or intermediate-acting insulin twice daily	Consider changing to long-acting or intermediate insulin in the evening and short or rapid-acting insulin with meals; take usual dose at sunset meal and half usual dose at predawn meal

Episodi ipoglicemici in pazienti diabetici in Ramadan trattati con vildagliptin vs glicazide in add on a metformina

UK observational study in patients with T2DM fasting during Ramadan (baseline HbA1c >8.5%) treated with metformin in addition to the DPP4 inhibitor, vildagliptin or gliclazide

Between groups difference -53.8% (95% CI: -74.9 to -26.3); P<0.001

*Total number of HEs was 24 with gliclazide and 2 with vildagliptin, one severe HE with gliclazide & none with vildagliptin

[‡] SU = Sulfonylurea (gliclazide)

HE = hypoglycaemic event; T2DM = type 2 diabetes mellitus; CI = confidence interval; SU = sulphonylurea; DPP4 = dipeptidyl peptidase 4 Hypoglycaemic events defined as plasma glucose measurement <3.5 mmol/L with or without symptoms .*Hypoglycaemia was the only adverse event monitored

Devendra D et al. Int J Clin Pract 2009;63:1446–50

VECTOR study:

variazioni HbA1c in pazienti diabetici in Ramadan

trattati con vildagliptin vs glicazide in add on a metformina

HbA1c reduction for vildagliptin vs. gliclazide pre- to post Ramadan; betweengroup difference -0.5% (P=0.0262)

- Mean number of missed doses was lower with vildagliptin (mean between-group difference –7.4; P=0.0204)
- Body weight remained unchanged in both groups

Prospective observational study of up to 16 weeks duration in 72 fasting Muslim patients with T2DM observed in UK clinical practice, receiving vildagliptin or SU as an addon treatment to metformin; per protocol set with pre- and post Ramadan HbA1c assessments, HbA1c; safety set, AEs and SAEs. [‡] SU = Sulfonylurea (gliclazide); VECTOR= Vildagliptin Experience Compared To gliclazide Observed during Ramadan; AE = adverse event; SAE = severe adverse event; NS = non-significant difference pre- to post Ramadan

Hassanein M et al. Curr Med Res Opin 2011;27:1367-74

VECTOR Study: Aderenza alla terapia nei due gruppi

The mean number of missed doses was markedly lower with Vildagliptin than with gliclazide (0.2 vs 7.6; betweengroup difference -7.4 doses; p = 0.0204)

 On average, patients had 7 fold more missed doses with gliclazide than
Vildagliptin

 Only 1 patient in the Vildagliptin group missed at least one dose, compared with 10 patients in the SU group

 There were a total of 4 missed doses in the Vildagliptin arm versus 266 in the SU arm

VIRTUE:

i risultati migliori sulle ipoglicemie

per vildagliptin sono indipendenti dalle sulfoniluree impiegate

Post hoc descriptive analysis. Safety set. SU = sulphonylurea

Estremo Oriente

β Cell Dysfunction Versus Insulin Resistance in the Pathogenesis of Type 2 Diabetes in East Asians

Insulin response to oral glucose tolerance

Insulinogenic Index and HOMA- IR

A comparison of insulin secretion and insulin sensitivity between East Asians and Northern Europeans

Allele frequency of genetic variants associated with incretin biology in Europe and East Asia

Gene	Reported effects in incretin biology	Representative genetic variants	Risk allele frequency in Europeans	Risk allele frequency in East Asians
GIPR	Incretin effect, postprandial glucose and BMI	rs10423928	0.18 ²³	0.18 ⁸⁹
GLP-1R	β-cell response to GLP-1	s6923761	0.36†	0.02†
TCF7L2	GIPR and GLP-1R expression in β-cells, treatment response to linagliptin	rs7903146	0.27 ²⁸	0.03 ²⁸
KCNQ1	Glucose-stimulated GIP and GLP-1 secretion	rs2283228*	0.59 ²⁷	0.92 ²⁷
WFR1 CTRB1/2	GLP-1 induced insulin secretion Response to GLP-1 and DPP-4 inhibitors	rs6446482* rs7202877	0.56 ⁹⁰ 0.89 ³¹	0.95 ⁹¹ 0.78†

*These particular variants have not been identified to be associated with the reported function of the gene. †Allele frequencies reported in the International HapMap Project site (http://hapmap.ncbi.nlm.nih.gov).

Comparisons of postprandial circulating glucagon-like peptide-1 and glucosedependent insulinotropic polypeptide concentrations according to glucose tolerance statuses in East Asians

Population and reference	Comparison group	Types of nutrients	GLP-1	GIP	DPP-4
Japanese, Lee <i>et al</i> ³⁷	T2DM (n = 21), IGT (n = 7), NGT (n = 12)	Mixed meal, 480 kcal (carbohydrate:protein:fat = 2.8:1:1) Oral glucose (75 g)	No difference in iAUC (intact) No difference in iAUC (intact)	No difference in iAUC (intact*) No difference in iAUC (intact*)	No difference in plasma concentrations
Japanese, Yabe <i>et al.</i> ³⁸	T2DM (n = 18), non-T2DM (n = 17)	Mixed meal, 480 kcal (carbohydrate:protein:fat = 2.8:1:1)	No difference in iAUC (both total and intact)	No difference in iAUC (both total and intact)	N/A
		Oral glucose (75 g)	No difference in iAUC (both total and intact)	No difference in iAUC (both total and intact)	
Koreans, Han <i>et al.</i> ³⁶	T2DM (n = 20), non-T2DM (n = 20)	Mixed meal, 556 kcal (carbohydrate 87 g protein 15 g, and fat 18 g)	No difference in iAUC (intact)	No difference in iAUC (total)	DPP-4 activity was increased in T2DM.
Koreans, Oh <i>et al</i> ³⁹	T2DM ($n = 16$), NGT ($n = 14$)	Oral glucose (75 g)	No difference in iAUC (total)	No difference in iAUC (total)	N/A

The designation total or intact in parenthesis denotes total or intact hormones. *It was uncertain whether the ELISA kit used in the study measured intact or total glucose-dependent insulinotropic polypeptide (GIP). However, the authors assumed that the values should be intact GIP levels. DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; iAUC, incremental area under the curves; IGT, impaired glucose tolerance; N/A, not available; NGT, normal glucose tolerance; T2DM, type 2 diabetes mellitus.

GLP-1 effects in humans: understanding the natural role of incretins

GLP-1=glucagon-like peptide-1

Nauck MA, et al. *Diabetologia* 1993;36:741–744; 2. Larsson H, et al. *Acta Physiol Scand* 1997;160:413–422; 3. Nauck MA, et al. *Diabetologia* 1996;39:1546–1553; 4. Flint A, et al. *J Clin Invest* 1998;101:515–520; 5. Zander et al. *Lancet* 2002;359:824–830

Summary of the meta-analyses comparing the efficacy of incretin-based therapy in Asians and non-Asians

Types of therapies and reference/clinical end-points	Asian-dominant studies	Non-Asian-dominant studies	Difference and/or statistical significance
DPP-4 inhibitors ⁶⁰			
HbA1c-lowering from baseline (%)	-0.92 (-1.03 to -0.82)	-0.65 (-0.69 to -0.60)	-0.26 (-0.36 to -0.17), P < 0.001
RR of achieving HbA1c <7.0% GLP-1 receptor agonists ⁶²	3.4 (2.6 to 4.7)	1.9 (1.8 to 2.0)	P < 0.05
HbA1c-lowering from baseline (%)	-1.16 (-1.48 to -0.85)	-0.83 (-0.97 to -0.70)	-0.32 (-0.64 to -0.01), P < 0.05
RR of achieving HbA1c <7.0%	5.7 (3.8 to 8.7)	2.8 (2.4 to 3.3)	P = 0.082

Numbers in parenthesis denote 95% confidence intervals. If the proportion of Asian participants was ≥50% in a study, it was classified as an Asiandominant study. Otherwise, it was classified as a non-Asian-dominant study. DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; HbA1c, glycated hemoglobin; RR, relative risk.

Changes in dietary pattern in East Asian countries and United States of America

Japan	Year of survey	1950	1960	1970	1980	1990	2000	2005	2010
	Total energy intake (kcal)	2098	2096	2210	2219	2026	1948	1904	1849
	Protein (%)	13.0	13.3	14.0	14.2	15.5	16.0	16.2	14.6
	Fat (%)	7.7	10.4	18.9	22.6	25.3	26.5	25.1	26.1
	Carbohydrate (%)	79.7	76.1	66.6	55.7	56.7	54.6	56.1	55.7
China	Year of survey	1952	1962	1970	1982	1992	2000	2004	2009
	Total energy intake (kcal)	2056	1697	1978	2518	2328	M2146/F1941	M2064/F1807	M1943/F1969
	Protein (%)	9.3	9.7	9.6	10.6	11.7	M24.0/F23.7	M24.6/F24.4	M25.5/F24.4
	Fat (%)	7.6	5.5	7.4	17.5	22.5	M26.3/F26.4	M26.9/F26.4	M27.8/F29.2
	Carbohydrate (%)	83.0	84.8	82.9	71.8	65.8	M58.9/F58.7	M57.8/F58.3	M56.2/F54.9
Korea	Year of survey			1969	1979	1989	2000	2005	2010
Korea	Year of survey Total energy intake (kcal)			1969 2105	1979 2098	1989 1871	2000 1863	2005 1826	2010 1691
Korea	Year of survey Total energy intake (kcal) Protein (%)			1969 2105 12.5	1979 2098 13.3	1989 1871 16.1	2000 1863 16.4	2005 1826 16.6	2010 1691 14.7
Korea	Year of survey Total energy intake (kcal) Protein (%) Fat (%)			1969 2105 12.5 7.2	1979 2098 13.3 11.2	1989 1871 16.1 13.4	2000 1863 16.4 19.7	2005 1826 16.6 21.3	2010 1691 14.7 20.0
Korea	Year of survey Total energy intake (kcal) Protein (%) Fat (%) Carbohydrate (%)			1969 2105 12.5 7.2 80.4	1979 2098 13.3 11.2 75.3	1989 1871 16.1 13.4 69.1	2000 1863 16.4 19.7 63.9	2005 1826 16.6 21.3 62.1	2010 1691 14.7 20.0 65.1
Korea United States of America	Year of survey Total energy intake (kcal) Protein (%) Fat (%) Carbohydrate (%) Year of survey	1950	1960	1969 2105 12.5 7.2 80.4 1970	1979 2098 13.3 11.2 75.3 1980	1989 1871 16.1 13.4 69.1 1990	2000 1863 16.4 19.7 63.9 2000	2005 1826 16.6 21.3 62.1 2005	2010 1691 14.7 20.0 65.1 2010
Korea United States of America	Year of survey Total energy intake (kcal) Protein (%) Fat (%) Carbohydrate (%) Year of survey Total energy intake (kcal)	1950 3200	1960 3100	1969 2105 12.5 7.2 80.4 1970 3300	1979 2098 13.3 11.2 75.3 1980 3500	1989 1871 16.1 13.4 69.1 1990 3800	2000 1863 16.4 19.7 63.9 2000 4200	2005 1826 16.6 21.3 62.1 2005 4100	2010 1691 14.7 20.0 65.1 2010 4000
Korea United States of America	Year of survey Total energy intake (kcal) Protein (%) Fat (%) Carbohydrate (%) Year of survey Total energy intake (kcal) Protein (%)	1950 3200 11.8	1960 3100 11.9	1969 2105 12.5 7.2 80.4 1970 3300 11.9	1979 2098 13.3 11.2 75.3 1980 3500 12.7	1989 1871 16.1 13.4 69.1 1990 3800 12.4	2000 1863 16.4 19.7 63.9 2000 4200 11.8	2005 1826 16.6 21.3 62.1 2005 4100 12.0	2010 1691 14.7 20.0 65.1 2010 4000 12.0
Korea United States of America	Year of survey Total energy intake (kcal) Protein (%) Fat (%) Carbohydrate (%) Year of survey Total energy intake (kcal) Protein (%) Fat (%)	1950 3200 11.8 39.1	1960 3100 11.9 40.1	1969 2105 12.5 7.2 80.4 1970 3300 11.9 40.1	1979 2098 13.3 11.2 75.3 1980 3500 12.7 41.7	1989 1871 16.1 13.4 69.1 1990 3800 12.4 39.6	2000 1863 16.4 19.7 63.9 2000 4200 11.8 40.9	2005 1826 16.6 21.3 62.1 2005 4100 12.0 42.6	2010 1691 14.7 20.0 65.1 2010 4000 12.0 42.8

Acarbosio riduce l'iperglicemia post-prandiale ritardando l'assorbimento intestinale del glucosio

Effetto del tempo di somministrazione di acarbosio sulla glicemia postprandiale

Profili glicemici in relazione ai diversi tempi di assunzione di acarbose o placebo rispetto ad un pasto standard. La significatività statistica si riferisce alla AUC (area sotto la curva).

L'assunzione di acarbosio deve avvenire all'inizio del pasto. L'assunzione 30' prima del pasto comporta una riduzione dell'efficacia del 50%.

Thiazolidinediones (TZD)

- ✓ Class of drugs for type 2 diabetes mellitus treatment
- ✓ They act primarily by increasing insulin sensitivity (insulinsensitizing drugs)
- Synthetic small molecule activators of peroxisome proliferator-actived receptor Υ (PPAR-Υ) that contain a thiazole-2,4-dione (thiazolidinedione, TZD) functional group

Terapeutic mechanisms of TZD in diabetes type 2

Theapeutic effects of TDZ-induced activation of PPAR-Υ

TZD –induced activation of PPAR-Υ in type 2 diabetic patients results in:

- ✓ decrease in the levels of circulating free fatty acids and increase in lipid storage in adipocytes
- ✓ increase in insulin sensitivity of adipocytes, muscle and liver
- ✓ decrease in insulin resistance
- \checkmark enhacement in insulin signaling cascade

Insults to the Beta-Cell

Protecting the Beta-Cell from Insults

Islet Amyloid Polypeptide

E. Bonora, NMCD 2008; 18: 74-83

Effect of Pioglitazone Versus Metformin on Cardiovascular Risk Markers in Type 2 Diabetes

	•				
Parameter	Pioglitazone	Pioglitazone	Metformin	Metformin	P value
	Baseline	Week 16	Baseline	Week 16	
Number of patients	24	24	26	26	-
Markers of inflammatory res	ponse				
CRP (mg/L)	1.8 (1.1–4.7)	1.4 (0.5–2.5)*	2.0 (1.1–2.9)	1.8 (0.8–3.7)	0.04
P-selectin (µg/mL)	56.9 (26.7-140)	52.2 (29.3-126.8)	41.3 (31.2-68.1)	47.5 (29.2–74.1)	0.73
E-selectin (µg/mL)	70.2 (52.6-81.5)	57.8 (53.7-83.8)**	65.1 (59.1–79.9)	68.5 (62.9–78.3)	0.01
ICAM-1 (µg/mL)	292 (233-322)	269 (241-312)	251 (230–296)	252 (215-309)	0.87
CD40L (pg/mL)	1.6 (0.5–2.9)	2.0 (0.4-3.6)	1.3 (0.8–2.5)	1.4 (0.8–2.4)	0.98
Markers of platelet activation	and thrombogenesis	5			
TXB2 (pg/mg creatinine)	146 (82-221)	121 (87–198)	123 (85-304)	159 (106–191)	0.61
TF (pg/mL)	113 (102-131)	139 (113–172)	141 (100–189)	145 (111-223)	0.23
PAI-1 (ng/mL)	55.1 (21.0-82.4)	35.8 (23.8-66.1)	32.7 (24.3-81.7)	39.5 (31.7-46.2)	0.69
Markers of oxidative stress					
Nitrotyrosine (nM)	6.7±1.5	6.6±1.6	6.5±1.4	6.3±1.0	0.82

Table 2 Laboratory efficacy and safety variables with pioglitazone versus metformin

Glucose parameters					
FPG (mg/dL)	153±40	126±25***	144±47	135±48*	0.01
HbA _{1c} (%)	6.9±0.9	6.5±0.8**	6.7±0.7	6.5±0.7*	0.36
Insulin (mU/L)	8.3 (6.7–14.7)	6.3 (4.7–9.2)***	10.0 (5.3–12.8)	8.1 (5.6–10.6)	0.014
HOMA index	3.2 (2.1-5.4)	2.0 (1.3-2.9)***	3.2 (2.0-4.1)	2.3 (2.1-3.3)	0.015
Lipid parameters					
Total cholesterol (mg/dL)	212 <u>+</u> 24	222±35**	215±35	212±35	0.05
HDL-C (mg/dL)	41±10	45±11*	40±9	42±9***	0.19
LDL-C (mg/dL)	141±26	148±34	147±29	142±27	0.07
VLDL-C (mg/dL)	22.8 (18.2-33.5)	23.8 (16.0-32.2)	24.3 (17.4–36.4)	26.4 (17.8-37.2)	0.94
FFA (mmol/L)	0.4 (0.3-0.5)	0.4 (0.2-0.5)	0.4 (0.3-0.5)	0.4 (0.3-0.6)	0.07
Triglycerides (mg/dL)	114 (91–168)	119 (80-161)	122 (87-182)	132 (89-186)	0.94
Safety parameters					
Hemoglobin (g/dL)	14.4±1.1	14.1 ± 1.0	14.6±1.0	14.4 ± 1.1	0.58
WBCs (10 ⁹ /L)	6.2±1.5	5.9±1.4**	6.5±1.9	6.3±1.7	0.60
Neutrophils (%)	51.4±8.0	50.2±7.2	53.5±7.8	53.7±9.3	0.72
ALT (U/L)	26.5 (20.5-33.0)	19.0 (17.0-23.5)***	28.0 (23.0-48.0)	27.5 (23.0-46.0)	< 0.0001
AST (U/L)	20.0 (18.0-23.0)	18.5 (15.0-22.0)*	20.0 (17.0-24.0)	21.0 (16.0-26.0)	0.003
γGT (U/L)	28.0 (21.0-36.5)	19.5 (14.0-26.5)***	35.5 (24.0-40.0)	32.0 (23.0-40.0)	< 0.0001

Long-term efficacy (104 wks) of pioglitazone + metformin versus gliclazide + metformin

Charbonnel B, et al. Diabetologia 2005

The ideal/personalized drug

- Efficacy
- Safety
- Other Clinical Advantages
- No/Few Adverse Effects
- Reasonable Cost/Value