

Type 2 diabetes: where are we now and where are we going ?

IMPACT OF DIABETES DRUGS ON CARDIOVASCULAR AND RENAL DISEASE IN TYPE 2 DIABETES

2-3 febbraio 2018

NH Roma Villa Carpegna, Via Pio IV, 6

Professor Paolo Pozzilli

Dept. Endocrinology & Diabetes University Campus Bio-Medico, Rome, Italy

Centre of Immunobiology, Barts & The London School of Medicine, Queen Mary, University of London, UK

Diabetes, the disease of the 10 Ds

DAILY DEFICIENCY DEMAND DEPRESSION **DEVASTATING** DEVICES DIET DIVERSITY DRUG DURATION

Maddaloni E., Pozzilli P., Endocrine, 2017

Type 2 diabetes and cardiovascular disease risk

Diabetes is a chronic disease associated with long-term vascular complications

Type 2 diabetes is a multisystem disorder that is also independently associated with a nearly twofold excess risk for a broad range of adverse cardiovascular outcomes including coronary heart disease (CHD), stroke, and cardiovascular death.

> Effective strategies to mitigate cardiovascular risk and prevent or reduce the occurrence of microvascular complications are the cornerstone of treatment for patients with diabetes.

Completed and ongoing cardiovascular outcome trials in type 2 diabetes

Modified from: Schernthaner G. et al., Therapeutics and Clinical Risk Management 2017

DPP-4 inhibitors and GLP-1 analogues

Heart failure in DPP-4Is CV outcome trials and meta-analysis

3-P MACE in DPP-4Is CV outcome trials and meta-analysis

Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes

the LEADER Trial

In the time-to-event analysis, the rate of the first occurrence of death from cardiovascular causes, non fatal myocardial infarction, or non fatal stroke among patients with type 2 diabetes was lower with liraglutide than with placebo.

Marso SP. et al., NEJM, 2016

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes

In patients with type 2 diabetes who were at high cardiovascular risk, the rate of cardiovascular death, non fatal myocardial infarction, or non fatal stroke was significantly lower among patients receiving semaglutide than among those receiving placebo, an outcome that confirmed the non inferiority of semaglutide.

Marso SP et al., N Engl J Med 2016

Marso SP et al., N Engl J Med 2016

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome

In patients with type 2 diabetes and a recent acute coronary syndrome, the addition of lixisenatide to usual care did not significantly alter the rate of major cardiovascular events or other serious adverse events.

Pfeffer MA et al., N Engl J Med 2015

Cardiovascular safety for once-weekly dulaglutide in type 2 diabetes: a pre-specified meta-analysis of prospectively adjudicated cardiovascular events

These results suggest that dulaglutide does not increase the risk of major CV events in T2D patients. The ongoing CV outcomes study, investigating CV events with a weekly dulaglutide (REWIND), will further assess CV safety of dulaglutide

Forest plot of the primary 4-component MACE endpoint by stratum. A comparison of the primary analysis results (HR [98.02 % CI]) in each stratum (study or combinations of studies by which the primary analysis was stratified) with the overall result. Numbers of CV events per each treatment group (Dula/Comparators) are indicated in the parentheses in the y-axis under Stratum

Incretins and CV outcomes

Subgroup (Outcome)	Year			OR (95% CI)	Events, Incretins	Events, Placebo	% Weight	
GLP-1 receptor agonists (/ SUSTAIN 6 LEADER ELIXA Subtotal (I-squared = 0.0?	ACM) 2016 2016 2015 %, p = 0.445)		◆	1.04 (0.72, 1.49) 0.84 (0.73, 0.97) 0.94 (0.78, 1.15) 0.89 (0.80, 0.99)	62/1648 381/4668 211/3034 654/9350	60/1649 447/4672 223/3034 730/9355	9.22 59.18 31.60 100.00	
DPP-4 inhibitors (ACM) TECOS EXAMINE SAVOR-TIMI 53 Subtotal (I-squared = 37.4	2015 2013 2013 %, p = 0.203)			1.02 (0.90, 1.16) 0.87 (0.70, 1.09) 1.11 (0.96, 1.28) 1.03 (0.94, 1.12)	547/7332 153/2701 420/8280 1120/18313	537/7339 173/2579 378/8212 1088/18230	48.51 14.80 36.69 100.00	
GLP-1 receptor agonists (C SUSTAIN 6 LEADER ELIXA Subtotal (I-squared = 28.6	CVM) 2016 2016 2015 3%, p = 0.247)			0.96 (0.63, 1.45) 0.78 (0.65, 0.93) 0.99 (0.79, 1.24) 0.86 (0.76, 0.99)	44/1648 219/4668 156/3034 419/9350	46/1649 278/4572 158/3034 482/9355	10.23 54.98 34.79 100.00	
DPP-4 inhibitors (CVM) TECOS EXAMINE SAVOR-TIMI 53 Subtotal (I-squared = 42.8	2015 2013 2013 3%, p = 0.174)			1.07 (0.91, 1.26) 0.79 (0.59, 1.05) 1.03 (0.86, 1.22) 1.01 (0.90, 1.12)	311/7332 89/2701 269/8280 680/18313	291/7339 111/2679 260/8216 662/18234	45.03 15.02 39.94 100.00	
GLP-1 receptor agonists (H SUSTAIN 6 LEADER ELIXA Subtotal (I-squared = 0.0%	HF) 2016 2016 2015 %, p = 0.543)			1.10 (0.75, 1.60) 0.87 (0.73, 1.05) 0.96 (0.74, 1.24) 0.93 (0.81, 1.07)	59/1648 218/4668 122/3084 399/9350	54/1649 248/4572 127/3034 429/9355	13.80 56.00 30.20 100.00	
DPP-4 inhibitors (HF) TECOS EXAMINE SAVOR-TIMI 53 Subiotal (I-squared = 42.3	2015 2013 2013 1%, p = 0.177)			1.00 (0.83, 1.20) 1.07 (0.78, 1.46) 1.27 (1.06, 1.51) 1.12 (1.00, 1.26)	228/7332 85/2701 289/8280 802/18313	229/7339 79/2679 228/8216 538/18234	40.16 14.42 45.42 100.00	
GLP-1 receptor agonists (N SUSTAIN 6 LEADER ELIXA Subtotal (I-squared = 50.3	VII) 2016 2016 2015 1%, p = 0.134)		- •	0.73 (0.50, 1.06) 0.65 (0.73, 1.00) 1.04 (0.87, 1.24) 0.91 (0.81, 1.02)	47/1648 292/4668 270/3034 609/9350	64/1649 339/4672 261/3034 664/3355	9.09 49.85 41.06 100.00	
DPP-4 inhibitors (MI) TECOS EXAMINE SAVOR-TIMI 53 Subtotal (I-squared = 0.0%	2015 2013 2013 6, p = 0.610)	* */	*	0.96 (0.81, 1.14) 1.08 (0.87, 1.33) 0.94 (0.80, 1.12) 0.96 (0.88, 1.09)	275/7332 187/2701 265/8280 727/18313	288/7330 173/2679 278/8216 737/18234	38.52 23.99 37.49 100.00	
GLP-1 receptor agonists (\$ SUSTAIN 6 LEADER ELIXA Subtotal (I-squared = 51.0	2016 2016 2016 2015 %, p = 0.130)			0.61 (0.38, 0.98) 0.87 (0.70, 1.06) 1.12 (0.79, 1.59) 0.88 (0.74, 1.04)	27/1648 173/4668 67/3034 267/9350	44/1649 199/4672 60/3034 303/9355	12.61 64.82 22.57 100.00	
DPP-4 inhibitors (Stroke) TECOS EXAMINE SAVOR-TIMI 53 Subrotal (I-squared = 0.07	2015 2013 2013 6, p = 0.496)			0.92 (0.73, 1.16) 0.90 (0.54, 1.49) 1.11 (0.88, 1.39) 1.00 (0.85, 1.17)	145/7332 29/2701 157/8280 331/18313	167/7339 32/2679 141/9216 330/18234	45.60 9.30 45.11 100.00	
		1		1				
Incretins are associated with better outcomes Incretins are associated with worse outcomes								

Elgendy IY et al., International Journal of Cardiology, 2017

SGLT-2 inhibitors

Ongoing and recently completed major CV outcomes trials of SGLT2 inhibitors

Drug name	Abbreviated name of the trial	Phase of the trial	Primary outcomes	Key result
Empagliflozin	EMPA-REG Outcome	Completed	CV death, non-fatal MI, non-fatal stroke	Significantly lower rates of death from cardiovascular causes; hospitalization for heart failure; death from any cause among Empagliflozin groups
Canagliflozin	CANVAS	Phase III	CV death, non-fatal MI, nonfatal stroke	To be declared in 2017/2018
Canagliflozin	CANVAS-R	Phase IV	Progression of albuminuria	To be declared in 2017
Canagliflozin	CREDENCE	Phase III	ESKD, S-creatinine doubling, renal/CV death	To be declared in 2019
Dapagliflozin	DECLARE-TIMI 58	Phase III	CV death, non-fatal	To be declared in 2019
Ertugliflozin	Ertugliflozin CVOT	Phase III	CV death, non-fatal MI, or non-fatal stroke	To be declared in 2020

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes

EmpaReg Outcome Trial

Zinman B. et al., NEJM, 2015

Glycated Haemoglobin Levels

Potential mechanisms involved in the reduction of cardiovascular events (cardiovascular death, total mortality, and heart failure hospitalization) observed in the EMPA-REG OUTCOME trial in T2D patients with prevalent atherosclerotic cardiovascular disease. The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes

Analysis of Two Key Renal Outcomes

Wanner C. et al., NEJM, 2016

Renal Function over Time: estimated glomerular filtration rate (eGFR) over a period of 192 weeks

Wanner C. et al., NEJM, 2016

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes

Primary outcome CV death, nonfatal myocardial infarction or stroke

In two trials involving patients with type 2 diabetes and an elevated risk of cardiovascular disease, patients treated with canagliflozin had a lower risk of cardiovascular events than those who received placebo but a greater risk of amputation, primarily at the level of the toe or metatarsal.

Other vascular events and death

Composite of 40% reduction in eGFR, end-stage Renal Disease, or renal death

The CANVAS Program met its primary objective of demonstrating cardiovascular safety, and also showed efficacy of canagliflozin for the prevention of CV events

Neal B. et al., N Engl J Med 2017

ORIGINAL ARTICLE

Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes

- These data suggest net overall benefit of canagliflozin for most patients with type 2 diabetes and high cardiovascular risk.
- Canagliflozin use was associated with an increased risk of amputation which should be taken into consideration when prescribing this agent.

SAVOR-TIMI to SUSTAIN-6: A critical comparison of cardiovascular outcome trials of anti-diabetic drugs

Primary outcomes in all CV outcome trials

CV death in 3 CV outcome trials

Non-fatal stroke in 3 CV outcome trials

Conclusions

Since the inception of mandatory cardiovascular (CV) safety outcome trial (CVOT) promulgated by US Food and Drug administration in 2008, several trials have been published with 3 different classes of anti-diabetic drugs in T2D.

The three CVOT conducted with saxagliptin, alogliptin and sitagliptin respectively, found them to be CV neutral.

However, both saxagliptin and alogliptin showed an increase in heart failure hospitalization (hHF), while sitagliptin had no such signal.

The CVOT conducted with lixisenatide (ELIXA) was <u>CV-neutral</u>, but both liraglutide (LEADER) and semaglutide (SUSTAIN-6) demonstrated <u>superiority in reducing MACE</u>.

LEADER had concordant <u>reduction in all CV endpoints</u>. SUSTAIN-6 had <u>most robust reduction in 3P-MACE</u>, although no reduction in the CV-death, all-cause death and hHF were observed.

The trial conducted with empagliflozin (EMPA-REG) found it to be <u>superior in reducing</u> <u>major adverse cardiac events (MACE)</u>.