

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di farmacia

Nuovi meccanismi d'azione e target farmacologici

Prof. Alberto Corsini Dipartimento di Scienze Farmacologiche

Figure 1. Factors Contributing to Cardiometabolic Risk

TNT: Time to First Major Cardiovascular Endpoint in Patients With Diabetes

*versus 9.7% in non-diabetic patients ** versus 7.8% in non-diabetic patients Shepherd Jet al. Diabetes Care 2006

Patients at or below LDL-C of 100 mg/dl had Vascular Events

Retrospective cohort study conducted in the UK of 19,882 patients >35 years of age

- Of 2191 statin-treated patients who experienced a CV/CB event, 67% were at LDL-C of 100 mg/dl
 - 33% of the 2191 patients who had a CV event were not at LDL-C of 100 mg/dl
- Among patients with a CV/CB event and
 - With LDL-C <100 mg/dl, 38.6% had low HDL-C and/or elevated triglycerides
 - With LDL-C >100 mg/dl, 43.9% had low HDL-C and/or elevated triglycerides

Patients were on statin therapy ≥6 weeks; >2 years pre- and post-statin history with laboratory data; no concomitant lipid-lowering drugs; and ≥1 complete lipid profile pre- and post-statin initiation. Patients were followed for up to 5 years

LDL-C=low-density lipoprotein cholesterol; HDL-C=high-density lipoprotein cholesterol; CV=cardiovascular; CB=cerebrovascular Phatak H et al. Poster presented at the European Atherosclerosis Society Congress; 10–13 June 2007: Helsinki, Finland. Poster P016-441.

HDL has multiple cardiovascular benefits

¹Barter P. *Eur Heart J Suppl.* 2004;6(Suppl. A): A19–A22; ²Tabet F, Rye KA. *Clin Sci* 2009;116:87-98; ³Yvan-Charvet et al. *Arterioscler Thromb Vasc Biol* 2010;30;139-143; ⁴O'Connell BJ, Genest J, Jr. *Circulation.* 2001;104:1978–1983; ⁵Calabresi et al. *Arterioscler Thromb Vasc Biol*. 2003;23:1724–1731.

The simple good and the simple bad!

Adapted from Barter P. Eur Heart J Suppl. 2004;6(Suppl A): A19–A22.

HDL and reverse cholesterol transport

1 Direct uptake of FC from HDL by SR-B1

- Esterification of FC
 by LCAT; CE taken up
 by SR-B1
- 3 CETP-mediated transfer of CE from HDL to VLDL in exchange for TG

4

Uptake of CE following binding to LDL-R

Adapted from Barter P, Rye KA. A new therapeutic target: cholesteryl: ester transfer protein. Current status and future directions. Birmingham, UK: Sherbourne Gibbs, 2008.

The Function of CETP: lipid transfer among all lipoproteins

Adapted from Niesor E., et al, J Lipid Res. 2010 Dec;51(12):3443-54. Epub 2010 Sep 22.

The Role of CETP in Atherogenesis

- CETP may promote or inhibit atherogenesis, depending on TG levels
- When TGs are normal CETP maintains an equilibrium of cholesteryl esters between HDL and LDL
- When TGs are elevated, CETP promotes transfer of cholesteryl esters to VLDL

Adapted from Barter et al. Arterioscler Thromb Vasc Biol. 2003;23:160–167.

CETP inhibitors: Differences in chemical structure and physicochemical properties

¹http://www.ama-assn.org/ama1/pub/upload/mm/365/dalcetrapib.doc; ²http://www.ama-assn.org/ama1/pub/upload/mm/365/torcetrapib.doc; ³http:// www.ama-assn.org/ama1/pub/upload/mm/365/anacetrapib.pdf.

Clinical Pharmacology of Dalcetrapib

• Chemical structure and Mechanism of action

- Preclinical studies
- Pharmacokinetics
- Clinical trials

CETP Inhibitors: Mechanism of Action Binding of Lipids and CETP Inhibitors to the CETP Molecule

- The cysteine at residue 13 of CETP seems to be essential for decreased CETP activity with dalcetrapib¹
- Torcetrapib is believed to bind to the helices at the end of the C and N barrels of the CETP molecule²

¹Okamoto et al. *Nature.* 2000;406:203–207; ²Clark et al. *J. Lipid Res.* 2006;47:537–552; ³Barter et al. *N Engl J Med.* 2007;357:2109–2122.

Dalcetrapib Differs from Anacetrapib and Torcetrpaib by not Preventing rhCETP induced pre-β-HDL formation

Niesor E., et al, J Lipid Res. 2010 Dec;51(12):3443-54. Epub 2010 Sep 22.

Effect of compounds affecting CETP activity on CETP induced pre-β-HDL formation (in vitro)

¹Dernick et al. Poster presented at 6th IAS-Sponsored Workshop on HDL. May 17-20, 2010; Whistler, BC, Canada; ²Barter et al. *N Engl J Med*. 2007;357:2109–2122.

Clinical Pharmacology of Dalcetrapib

- Chemical structure and Mechanism of action
- Preclinical studies
- Pharmacokinetics
- Clinical trials

Dalcetrapib increased fecal [3H]-bile acid and [3H]neutral sterol radioactivity

[³H]-neutral sterols

[³H]-bile acids

Data shown are mean ±SD **P* < .05; ***P* < .01 vs. control (Dunnett test) Dalcetrapib 100 mg/kg bid; torcetrapib 30 mg/kg qd; anacetrapib 30 mg/kg qd

Clinical Pharmacology of Dalcetrapib

- Chemical structure and Mechanism of action
- Preclinical studies
- Pharmacokinetics
- Pharmacodinamics
- Clinical trials

Comparison of CETP inhibitors: Clinical pharmacology

	Dalcetrapib	Torcetrapib	Anacetrapib
Clinical dosing regimen	600 mg o.d. ¹	60 mg o.d. ²	100 mg o.d. ³
Food effect*	~2x ⁴	~20–30x ⁵	~6–8x ⁶
Terminal half-life	~30 h ⁷	∼2 00 h ⁸	>100 h ⁹
Accumulation	~20% ¹⁰	?	85-280% ¹¹
Clearance route	Metabolism ⁷	Metabolism ⁸	Metabolism ⁹
Metabolic pathways	Glucuronidation, methylation ⁷	Decarbamoylation (CYP3A4) ⁸	Demethylation (CYP3A4) ⁹
Drug-drug interactions with cytochrome P450 inhibitors	None ¹²	?	Ketoconazole: 4.6x ¹³ Diltiazem: 1.9x ¹⁴

¹Schwartz et al. *Am Heart J.* 2009;158:896-901; ²Barter et al. *N Engl J Med.* 2007;357:2109–2122; ³Cannon et al. *Am Heart J.* 2009;158:513-519; ⁴Roche data on file;

⁵Perlman et al. *Int J Pharm*. 2008:351:15–22; ⁶Krishna et al. *Br J Clin Pharmacol*. 2009;68:535-545; ⁷Derks et al. *Clin Pharmacol Ther*. 2010;87 (suppl 1):S24;

⁸Dalvie et al. *Drug Metab Dispos*. 2008;36:2185-98; ⁹Kumar et al. *Drug Metab Dispos*. 2010;38:474–483; ¹⁰Derks et al. *Eur J Clin Pharmacol*. 2010; doi 10.1007/s00228-010-0841-2; ¹¹Krishna et al. *Clin Pharmacol Ther*. 2008;84:679-683; ¹²Derks et al. *Clin Ther*. 2009;31:586–599; ¹³Krishna et al. *J Clin Pharmacol*. 2009;49:80-87; ¹⁴Garg et al. *J Clin Pharmacol*. 2010; in press.

Clinical Pharmacology of Dalcetrapib

- Chemical structure and Mechanism of action
- Preclinical studies
- Pharmacokinetics
- Clinical trials

The dal-HEART Program dalcetrapib HDL Evaluation, Atherosclerosis & Reverse cholesterol Transport

Double blind, randomized, placebo-controlled studies

dal-OUTCOMES¹

15,600 patients recently hospitalized for ACS

To evaluate the effect of dalcetrapib on CV outcomes

RECRUITING

dal-VESSEL²

450 *patients with CHD or CHD risk equivalent*

To evaluate the effect of dalcetrapib on endothelial function and blood pressure, measured by FMD and ABPM

RECRUITMEN COMPLETE

dal-PLAQUE³

130 patients with CHD

To evaluate the effect of dalcetrapib on plaque inflammation, plaque size and burden, measured by PET/CT and MRI

RECRUITMENT COMPLETE

dal-PLAQUE 2⁴

900 *patients with CAD*

To evaluate the effect of dalcetrapib on atherosclerotic disease progression, assessed by IVUS and carotid B-mode ultrasound

RECRUITING

¹Schwartz et al. *Am Heart J.* 2009;158:896-901; ²http://clinicaltrials.gov/ct2/show/NCT00655538 Accessed April 1st 2010; ³http://clinicaltrials.gov/ct2/show/NCT00655473 Accessed 1st April 2010; ⁴http://clinicaltrials.gov/ct2/show/NCT01059682 Accessed April 1st 2010

Figure 1. Factors Contributing to Cardiometabolic Risk

Synergistic beneficial actions of balanced PPAR- α/γ agonists

Charbonnel B, Lancet **374: 97-98; 2009**

Dual PPAR agonists

A Promising Approach

- Both dyslipidemia and insulin resistance appear to promote atherosclerosis in diabetics
- Likewise, improving lipid profile and insulin resistance both promise to improve clinical outcomes

A novel dual α/γ PPAR activator

Development of dual PPAR agonists to date

	Reason for termination	Phase	Comments
Tesaglitazar	Impairment of renal function	III	Too much PPAR-α activity?
Muraglitazar	Excess CV events in pooled trials	Ш	Too much PPAR-γ activity?
Aleglitazar		III	Balanced PPAR effects?

Aleglitazar's balanced activation of both PPAR α and PPAR γ receptors in vitro compared to unbalanced profile of rosi and pio

	aleglitazar	rosiglitazone	pioglitazone
EC ₅₀ PPARg (nM)	8	245	1060
EC ₅₀ PPARa (nM)	5	15000	11700
Clinical Dose	150 µg	8 mg	45 mg

maximum plasma concentration at clinical dose

Source: RDR report 1038635

Aleglitazar: Gene Chip Microarray Analysis

EC50 aligned dosage **Drug concentration** State changes Aleglitazar - Low 0.013 mM 69 - Medium 0.064 mM 0.32 mM 69 - High Muraglitazar - Low 0.13 mM - Medium 0.64 mM 73 - High 3.2 mM 199 **Pioglitazone** + **Fenofibric Acid** - Low 0.11 mM + 6 mM0.56 mM + 30 mM- Medium - High 2.8 mM + 155 mM428

Significant state changes between treatment and control

Shared state changes at high doses

• These data suggest that the gene activation/deactivation pattern of aleglitazar is distinct compared with muraglitazar and is distinct compared to a combination of pioglitazone + fenofibrate

Data on FIle

Aleglitazar Clinical Development Program

Study	Objectives
SYNCHRONY trial ¹	 Dose finding, determine efficacy, safety, and tolerability Primary Endpoint: HbA1c change from baseline at week 16
SESTA-R trial ²	 Evaluate effect (at 4x therapeutic dose, 600 μg) on GFR, renal plasma flow, and serum creatinine
ALECARDIO trial ³	 To determine whether aleglitazar reduces CV mortality and morbidity in patients with a recent ACS event and T2DM
	 Evaluate the effects of aleglitazar on other clinical endpoints of CV risk
	 Evaluate the effects of aleglitazar on glycemic control, the lipoprotein profile, blood pressure, and biomarkers of CV risk
	 Evaluate the tolerability and long-term safety profile of aleglitazar (e.g. fluid retention, heart failure, fractures, renal function, musculoskeletal adverse events and liver enzyme elevation)
ALENEPHRO trial⁴	 Long-term safety data (52-weeks) and reversibility (8-weeks) with aleglitazar at therapeutic dose (150 μg)
Drug-drug interaction studies (ACE-I, ARBs, ASA, NSAIDs)	 PK/PD effects of concomitant treatment of aleglitazar and another agent on renal function in controlled setting
Renal Mechanistic Study	 Examination of renal effects in comparison to fibrate and pioglitazone

SYNCHRONY: Study Design

Henry R et al. Lancet 2009;374:126

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di farmacia

Effect of aleglitazar on HDL functionality: ex-vivo study in non-human primates

Multiple biological actions of HDL on vascular endothelium

Calabresi L, ATVB. 2003;23(10):1724-31

UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI FARMACIA

Effect of HDL on cell surface expressionFACSlevels of VCAM1 and ICAM1

Effect of HDL on eNOS expression levels

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di farmacia

Lipid composition of HDL from monkeys treated or not with aleglitazar

Component	Human HDL*	Group A	Group C
FC + CE	48.4%	27.0%	34.1%
TG	6.3%	3.1%	1.7%
PL	45.3%	69.9%	64.2%

* Data from Ronald W.C. et *al*. ATVB (2004) 24:490-497

Atherosclerosis 204 (2009) 424-428

Acute hypertriglyceridaemia in humans increases the triglyceride content and decreases the anti-inflammatory capacity of high density lipoproteins

Sanjay Patel^{a,b,c,*}, Rajesh Puranik^{a,b,c}, Shirley Nakhla^a, Pia Lundman^d, Roland Stocker^e, Xiao S. Wang^e, Gilles Lambert^a, Kerry-Ann Rye^{a,c}, Philip J. Barter^{a,c}, Stephen J. Nicholls^f, David S. Celermajer^{a,b,c}

Patel S et al. Atherosclerosis. 2009;204(2):424-8

Effects of triglyceride enrichment on the anti-inflammatory properties of HDL

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di farmacia

Conclusions

HDLs isolated after treatment with aleglitazar seem to reduce the extent of VCAM1 and ICAM1 expression in response to 6h stimulation with TNF- α and to preserve the expression of eNOS after 24 h incubation with TNF- α .

Both changes may exert a positive effect on the HDL function and therefore can account for a potential atheroprotective effect of aleglitazar.

Aleglitazar significantly decreases HDL's TG concentrations and only marginally those of phospholipids. Notably, a compositional change in TG has also been evident.

Figure 1. Factors Contributing to Cardiometabolic Risk