



#### Alessandro MAURO

Terapia con GLP1-agonisti: nuovi orizzonti di utilizzo nelle patologie neurologiche degenerative in pazienti diabetici e non

Torino 18 Settembre 2023

Sharing experience in Diabetologia ed Endocrinologia



### Malattie neurodegenerative

- Patologie del sistema nervoso caratterizzate da:
  - Processo degenerativo progressivo di uno o più sistemi neuronali
  - -Assenza di infiammazione e necrosi tissutale





type 1 PrPres MM 129





type 2 PrPres VV 129







### Diabete e Malattie neurodegenerative (M di Parkinson)

| Study design                                   | Sample size                                                                                                                            | Results                                                                                                                                                                                                | Diabetes and PD association                                                        | References |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------|
| Retrospective study                            | 200 IPD patients and 200 controls                                                                                                      | The cumulative incidence of ischemic stroke, myocardial infarction, and diabetes mellitus was higher in control than in PD patients                                                                    | 22 controls and 13 cases with diabetes                                             | [147]      |
| Retro prospective, case control study          | 119 presumptive etiology of IPD and 238 controls                                                                                       | The cumulative incidence of ischemic stroke, hypertension, and diabetes mellitus (DM) was not significantly different between control and PD patients                                                  | Diabetes more prevalent among controls                                             | [148]      |
| Cohort study                                   | 791 PD patients out of total 24,831 patients reported<br>Parkinsonism whereas remaining 24,040 patients did not<br>report any symptoms | Rates of diabetes among the population with Parkinsonism were higher than expected                                                                                                                     | 29.7% of PD patients and 21.5% of<br>controls had DM                               | [149]      |
| Cohort study                                   | 15,306 PD patients; 30,612 controls                                                                                                    | The occurrence of diabetes, ischemic heart disease, and myocardial infarction was more common in persons with Parkinsonism compared to those without Parkinsonism                                      | PD patients and controls showed similar admission rates for diabetes               | [150]      |
| Case control study                             | 352 IPD patients; 484 individuals without PD                                                                                           | Risk of PD was reduced in case of female and male smokers with and without diabetes                                                                                                                    | Diabetes prevalence in 7.4% of PD patients and 12.6% in controls                   | [151]      |
| Population-based cross-sectional study         | 197 PD patients and 197 controls                                                                                                       | PD cases did not differ significantly from referent subjects with respect to proportion with diagnosis of diabetes, ischemic heart disease, and myocardial infarction                                  | PD patients did not show significant comorbidities                                 | [152]      |
| Hospital series case control study             | 178 PD patients and 533 individuals with other neurological diseases                                                                   | Diabetes, high blood pressure, high blood glucose, high blood cholesterol, and triglycerides were significantly less frequent in IPD than in controls                                                  | 3.4% of PD patients and 10.9% of controls had DM                                   | [153]      |
| Prospective, cohort<br>study                   | 51,552 individuals with 633 PD diagnosis                                                                                               | T2DM is linked to a higher risk for the development of PD                                                                                                                                              | T2DM is associated with increased PD                                               | [154]      |
| Longitudinal, cohort<br>study                  | 1,030 PD patients                                                                                                                      | Diabetes was associated with parkinsonian signs, especially gait disturbance, postural reflex impairment, and vascular factors, that play a key role in this association                               | Diabetes is associated with more severe PD                                         | [155]      |
| Meta-analysis                                  | NA                                                                                                                                     | A significant upregulation of substantia nigra genes in PD, which have biological association with diabetes, cancer, and inflammation                                                                  | Shared dysregulated pathways<br>between T2DM and PD                                | [156]      |
| Prospective, cohort<br>study                   | 556 patients with PD                                                                                                                   | Men with diabetes have a higher risk of developing PD than non-diabetic men                                                                                                                            | T2DM is associated with an increased risk of PD in men                             | [157]      |
| Case control study                             | 318 PD patients and controls                                                                                                           | Preceding a diabetic condition increases the risk for the onset of PD                                                                                                                                  | Diabetes preceding PD onset                                                        | [158]      |
| Meta-analysis                                  | NA                                                                                                                                     | Diabetes is an important risk factor for PD                                                                                                                                                            | Diabetes could be risk factor for future PD                                        | [5]        |
| Genome-wide<br>association studies             | NA                                                                                                                                     | Type 1 and 2 diabetic patients have deficits in cognitive functions                                                                                                                                    | Shared molecular pathways between PD and T1DM                                      | [159]      |
| Cohort study                                   | 656 PD patients                                                                                                                        | No evidence of a relationship between DM and risk of developing PD                                                                                                                                     | No association between PD and DM                                                   | [160]      |
| Case control                                   | 1931 PD patients and 9651 controls                                                                                                     | High risk of developing PD with T2DM                                                                                                                                                                   | T2DM is associated with an increased risk of PD, especially early onset of PD      | [161]      |
| Prospective, cohort<br>study                   | 21611 diabetic patients and 267 051 controls                                                                                           | Diabetes could be a risk factor for future PD progression                                                                                                                                              | T2DM is associated with an increased risk of PD                                    | [11]       |
| Case control                                   | 53 PD patients with dementia and 57 patients with PD                                                                                   | The prevalence of insulin resistance is significantly higher in PD-associated dementia as compared to those nondemented PD                                                                             | Insulin resistance is associated with an increased risk of dementia in PD          | [26]       |
| Case-control                                   | 89 patients with diabetes and 89 controls                                                                                              | Onset of diabetes before the onset of PD is a high-risk factor for more severe PD symptoms                                                                                                             | T2DM is associated with increased PD severity                                      | [19]       |
| Case-control                                   | 603,413 PD patients and 472 718 Controls                                                                                               | Diabetic patients showed a significantly increased risk of PD compared to the control subjects                                                                                                         | Diabetes is associated with increased risk of PD                                   | [162]      |
| Case-control                                   | 64,166 diabetic patients and 698 587 controls                                                                                          | Increased incidence of PD risk in T2DM by 2.2-fold                                                                                                                                                     | T2DM is associated with increased risk of PD                                       | [163]      |
| I <mark>nt</mark> egrative network<br>analysis | NA                                                                                                                                     | Mitogen-activated protein kinase (MAPK) cascade, serine-threonine kinase activity, activation of the immune response, insulin receptor, and lipid signaling are convergent pathways between TDM and PD | Convergent molecular pathways<br>between T2DM and PD                               | [164]      |
| System-based approach                          | NA                                                                                                                                     | T2DM and PD pathophysiology are strongly linked to each other                                                                                                                                          | A positive association between T2DM and PD                                         | [165]      |
| Case-control                                   | NA                                                                                                                                     | The association between diabetes and postural instability and gait difficulty persisted after controlling for comorbid hypertension and body mass index                                                | Diabetes is associated with severe postural instability and gait difficulty in PD  | [166]      |
| Meta-analysis                                  | 1,761,632 individuals                                                                                                                  | Individuals with diabetes had higher incidence of PD compared to non-diabetic individuals                                                                                                              | Diabetes is associated with a 38% increased risk of PD                             | [16]       |
| Retro prospective,<br>case–control             | 36,294 diabetic patients and 108,882 healthy controls                                                                                  | Increased risk of PD with patients having DM compared to non-DM patients                                                                                                                               | DM increased the risk of PD by 23%                                                 | [4]        |
| A record-linkage cohort<br>study               | 2,017,115 T2DM patients and 6,173,208 reference cohort                                                                                 | There were significantly increased rates of PD following T2DM                                                                                                                                          | T2DM was relatively higher in patients with PD                                     | [167]      |
| Population-based case<br>study                 | 25 patients with PD and DM 25 PD patients without diabetes                                                                             | DM was associated with higher tau (cerebrospinal fluid) CSF level, lower striatal dopamine (DA) transporter binding, and higher motor score in patients with PD                                        | PD with DM was associated with<br>severe motor progression or cognitive<br>decline | [10]       |
| Retrospective<br>observational cohort<br>study | NA                                                                                                                                     | Antidiabetic drug thiazolidinediones reduced risk of developing PD in the diabetic patients                                                                                                            | Treatment of diabetes decreased PD progression by 30%                              | [168]      |
| Cohort study                                   | 33,443 individuals with PD                                                                                                             | DM and being underweight were associated with increased incidence of PD                                                                                                                                | Significant interaction between diabetes and PD development                        | [169]      |

# Diabete e Malattie neurodegenerative (M di Alzheimer e M di Parkinson)

Comorbidità fra MA e DM superiore all'attesa di 1.3 - 1.9 volte

I pazienti affetti da DM hanno una probabilità maggior di sviluppare decadimento cognitivo

Studi di coorte suggeriscono un aumento del rischio di sviluppare MP nei soggetti con DM Studi caso-controllo non confermano l'aumento del rischio

La presenza di DM rende la MP più grave e ne rende più rapida la progressione

Ridotta incidenza di MP in pazienti con DM trattati con inibitori della dipeptidil-peptidasi-4 o tiazolidinedioni













Possibili meccanismi terapeutici di farmaci antidiabetici nei confronti della M di Parkinson



GLP-1 (Glucagon Like Peptide 1) è secreto da popolazioni cellulari del tratto gastrointestinale, ma anche da alcune popolazioni neuronali nel nucleo del tratto solitario.

Recettori per GLP-1 e/o GLP-1 sono stati identificati nel talamo, ipotalamo, neuroni piramidali dell'ippocampo, corteccia, cellule di Purkinje e nel tronco, nonché in astrociti e microglia.

Il signaling di GLP-1 è implicato anche nelle funzioni cognitive (miglioramento di apprendimento e memoria in ratti che sovraesprimono i recettori GLP-1 nell'ippocampo)

## GLP-1 signaling nel cervello e cascate di eventi potenzialmente favorevoli



Ageing Research Reviews 89 (2023) 101979



- Improve LTP formation and synaptic strength

| Studies             | Experiment                         | GLP-1RA      | Observations                         | Publications        |
|---------------------|------------------------------------|--------------|--------------------------------------|---------------------|
| Preclinical studies | Animal model                       |              |                                      |                     |
| AD features         |                                    |              |                                      |                     |
| Plaque load         | APP/PS1/tau mice                   | Liraglutide  | Reduction of plaque load             | [ <u>72,76,77</u> ] |
|                     | 5xFAD mice                         | Liraglutide  | Reduction of plaque load             | [ <u>78</u> ]       |
|                     | APP/PS1 mice                       | Lixisenatide | Reduction of plaque load             | [ <u>76</u> ]       |
|                     | 3xTg-AD mice                       | Exendin-4    | Reduction of plaque load             | [ <u>62</u> ]       |
| Tau phosphorylation | APP/PS1/tau mice                   | Liraglutide  | Reduction of neurofibrillary tangles | [ <u>56,72</u> ]    |
|                     | hTauP301L mice                     | Liraglutide  | Reduced Tau phosphorylation          | [ <u>58</u> ]       |
|                     | Aβ injection in mice               | Liraglutide  | Reduced Tau phosphorylation          | [ <u>67</u> ]       |
|                     | APP/PS1 x db/db mice               | Liraglutide  | Reduced Tau phosphorylation          | [ <u>79</u> ]       |
|                     | Streptozotocin injection in mice   | Dulaglutide  | Reduced Tau phosphorylation          | [ <u>73</u> ]       |
| Cognitive and       | Aβ injection in mice               | Liraglutide  | Improved cognitive impairment        | [ <u>74</u> ]       |
| memory              | Aβ injection in rats               | Lixisenatide | Improved spatial memory              | [ <u>80</u> ]       |
| performance         | Streptozotocin injection in mice   | Dulaglutide  | Improved memory ability              | [ <u>73</u> ]       |
| Other               | Aβ injection in non-human primates | Liraglutide  | Reduced synaptic loss                | [ <u>74</u> ]       |

| Studies             | Experiment                              | GLP-1RA      | Observations                                    | Publications  |
|---------------------|-----------------------------------------|--------------|-------------------------------------------------|---------------|
| Preclinical studies | Animal model                            |              |                                                 |               |
| PD features         |                                         |              |                                                 |               |
| Dopaminergic        | 6-OHDA rat model                        | Liraglutide  | No influence on dopaminergic neuronal           | [ <u>59</u> ] |
| neuronal loss       | 6-OHDA rat model                        | Exendin-4    | loss                                            | [ <u>55</u> ] |
|                     | 6-OHDA rat model                        | Exendin-4'   | Neurogenesis                                    | [ <u>60</u> ] |
|                     |                                         |              | Reduced lesions                                 |               |
| Motor performance   | MPTP mouse model                        | Liraglutide  | Improved motor control                          | [ <u>64</u> ] |
|                     | MPTP mouse model                        | Lixisenatide | Improved motor control                          | [ <u>64</u> ] |
| α-synuclein         | Preformed fibrils injection in striatum | Exendin-4    | Reduced loss of dopaminergic neurons            | [ <u>81</u> ] |
| aggregation         | of human A53T α-synuclein mice          | (NLY01)      | and improved motor performance                  | [ <u>82</u> ] |
|                     | Preformed fibrils injection in the      | Exendin-4    | No significant reduction of $\alpha$ -synuclein |               |
|                     | olfactory bulb of C57BL/6J mice         |              | aggregation                                     |               |



Contents lists available at ScienceDirect

### Neurochemistry International 131 (2019) 104583

journal homepage: www.elsevier.com/locate/neuint

Mechanism of the neuroprotective effect of GLP-1 in a rat model of Parkinson's with pre-existing diabetes

Eman A. Elbassuoni<sup>a,\*</sup>, Rasha F. Ahmed<sup>b</sup>



| Studies         | Experiment         | GLP-1RA      | Observations                                       | Publications              |
|-----------------|--------------------|--------------|----------------------------------------------------|---------------------------|
| Clinical trials | Trial ID           |              |                                                    |                           |
| AD              | NCT02140983        | Liraglutide  | Increased connectivity in the default mode network | [85]                      |
|                 | NCT01469351        | Liraglutide  | Improved cerebral glucose uptake                   | [ <u>86</u> , <u>87</u> ] |
|                 | NCT01843075        | Liraglutide  | Improved cognition                                 | [88]                      |
|                 | NCT01255163        | Exenatide    | No significant changes in cognition                | [ <u>89</u> ]             |
|                 | NCT04777396        | Semaglutide  | Recruiting                                         |                           |
|                 | <u>NCT04777409</u> | Semaglutide  | Recruiting                                         |                           |
| PD              | NCT01971242        | Exenatide    | Improved motor and cognitive outcomes              | [90]                      |
|                 | NCT01174810        | Exenatide    | Improved motor and cognitive outcomes              | [ <u>91</u> ]             |
|                 | NCT02953665        | Liraglutide  | Active                                             |                           |
|                 | NCT03439943        | Lixisenatide | Active                                             |                           |
|                 | NCT04154072        | Exenatide    | Active                                             |                           |
|                 | NCT03659682        | Semaglutide  | Not yet recruiting                                 |                           |

|                               | Target /Drug name                      | Number of patients                                                                                             | Trial<br>duration | Dosage               | Outcomes                                                                                                                 |
|-------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------|
| AD                            |                                        |                                                                                                                |                   |                      |                                                                                                                          |
| Gejl et al. (2016)            | GLP-1 analog,<br>liraglutide           | 38 patients with AD (N = 18 treatment, 20 placebo)                                                             | 26 weeks          | 1.8 mg daily         | Prevented decline in cerebral glucose<br>metabolism<br>No cognitive benefit (not powered to<br>see cognitive change)     |
| Watson et al.<br>(2019)       | GLP-1 analog,<br>liraglutide           | 26 mid-aged participants with subjective cognitive complaints $(N = 15 \text{ treatment}, 11 \text{ placebo})$ | 12 weeks          | 1.8 mg daily         | Improved default mode network<br>intrinsic connectivity<br>No cognitive benefit (not powered to<br>see cognitive change) |
| Mullins et al.<br>(2019)      | GLP-1 analog,<br>exenatide             | 27 patients with probable AD (N = 13 Treatment, 14 placebo)                                                    | 18 months         | 5 mcg twice<br>daily | No cognitive benefit (not powered to<br>see cognitive change)                                                            |
| PD                            |                                        | -                                                                                                              |                   |                      |                                                                                                                          |
| Aviles-Olmos<br>et al. (2013) | GLP-1 analogue,<br>exenatide           | 45 patients with moderate PD (N = 21 treatment, 24 control)                                                    | 12 months         | 5-µg twice<br>daily  | Treatment improved motor and cognitive outcomes                                                                          |
| Athauda et al.<br>(2017)      | GLP-1 analogue,<br>exenatide           | 62 patients with moderate PD (N = 32 treatment,<br>30 placebo)                                                 | 48 weeks          | 2 mg once<br>weekly  | Treatment improved motor outcomes<br>No cognitive effects                                                                |
| Novak et al.<br>(2019)        | Insulin, Intranasal<br>regular insulin | 15 patients with a clinical diagnosis of PD or<br>multiple system atrophy (N = 9 treatment, 6<br>placebo)      | 4 weeks           | 40 IU daily          | Treatment improved motor performance and functionality                                                                   |

|                              | Target /Drug name                                               | Number of patients                                                                                                       | Trial<br>duration                 | Dosage                       | Outcomes                                                                                                                        |
|------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| AD                           |                                                                 |                                                                                                                          |                                   |                              |                                                                                                                                 |
| Claxton et al.<br>(2015)     | Insulin, Intranasal<br>insulin detemir                          | 60 patients with MCI or mild to moderate AD<br>(N = 21 insulin determir 20 IU, 19 insulin determir<br>40 IU, 20 placebo) | 3 weeks                           | 20 or 40 IU<br>daily         | 40 IU insulin detemir improved memory composite                                                                                 |
| Craft et al. (2012)          | Insulin, Intranasal<br>regular insulin                          | 104 patients with amnestic MCI or mild to moderate<br>AD<br>(N = 30 placebo, 36 insulin 20 IU, 38 insulin 40 IU          | 4 months                          | 10 or 20 IU<br>twice-daily   | 10 IU (twice-daily) improved delayed<br>memory<br>Both doses preserved caregiver-rated<br>functional ability                    |
| Craft et al. (2017)          | Insulin,<br>Intranasal regular<br>insulin or insulin<br>detemir | 36 patients with MCI or mild to moderate AD (N = 12 regular insulin, 12 insulin determir, 12 placebo)                    | 4 months                          | 40 IU daily                  | Regular insulin improved memory<br>and preserved MRI volume                                                                     |
| Craft et al. (2020)          | Insulin,<br>Intranasal regular<br>insulin                       | 240 patients with amnestic MCI or AD                                                                                     | 12 months                         | 40 IU daily                  | No cognitive or functional benefit                                                                                              |
| Luchsinger et al.<br>(2016)  | Metformin                                                       | 80 participants with amnestic MCI<br>(N = 40 treatment, 40 placebo)                                                      | 12 months                         | 1000 mg twice<br>daily       | Treatment improved recall of the<br>Selective Reminding Test of verbal<br>memory<br>No other cognitive or biomarker<br>benefits |
| Koenig et al.<br>(2017)      | Metformin                                                       | 20 patients MCI or mild dementia due to AD                                                                               | 16 weeks<br>(crossover<br>design) | 1000 mg twice<br>daily       | Treatment improved executive functioning                                                                                        |
| Sato et al. (2011)           | PPAR-γ agonist,<br>pioglitazone                                 | 42 patients with mild AD<br>(N = 21 treatment, 21 placebo)                                                               | 6 months                          | 15-30 mg daily               | Treatment improved cognition and<br>regional cerebral blood flow in the<br>parietal lobe                                        |
| Watson et al.<br>(2005)      | PPAR-y agonist,<br>rosiglitazone                                | 36 patients with amnestic MCI or probable AD<br>(N = 24 treatment, 12 placebo)                                           | 6 months                          | 4 mg daily                   | Treatment preserved delayed-memor<br>and selective attention                                                                    |
| Risner et al.<br>(2006)      | PPAR-γ agonist,<br>rosiglitazone                                | 499 patients with probable AD (N = 127 treatment 2 mg, 130 treatment 4 mg, 132 treatment 8 mg, 122 placebo)              | 24 weeks                          | 2, 4 or 8 mg<br>daily        | No cognitive benefit (primary<br>analysis)<br>ApoE &4 non-carriers may have                                                     |
|                              |                                                                 |                                                                                                                          |                                   |                              | cognitive and functional benefit<br>(exploratory)                                                                               |
| Chamberlain et al.<br>(2020) | PPAR 6/γ dual agonist,<br>T3D-959                               | 34 patients with mild to moderate AD (N = 9 treatment 3 mg, 9 treatment 10 mg, 10 treatment 30 mg, 8 treatment 90 mg)    | 2 weeks                           | 3, 10, 30, or<br>90 mg daily | Treatment improved cognition and cerebral glucose metabolism                                                                    |

