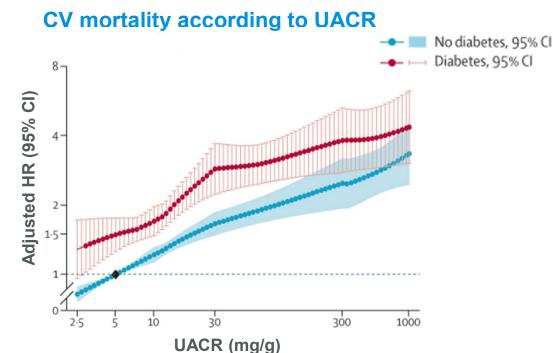

XV CONGRESSO REGIONALE AMD MOLISE 22 OTTOBRE 2022

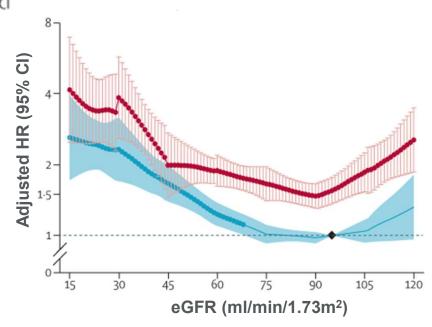
Diabete, Cuore e Rene: dalla Fisiopatologia alla Terapia

Luca De Nicola

Nephrology and Dialysis Unit

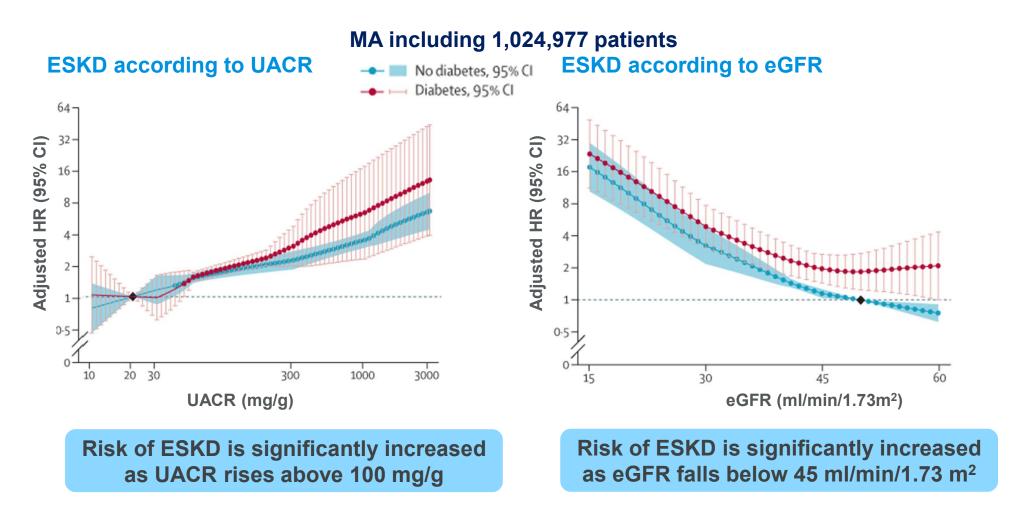


Cardio-renal prognosis by eGFR and albuminuria in Diabetes Mellitus


CV risk increases as albuminuria progresses or eGFR declines ...and risk is constantly higher in DM vs no-DM

MA including 1,024,977 patients

Risk of CV death is significantly increased as UACR rises above 10 mg/g


CV mortality according to eGFR

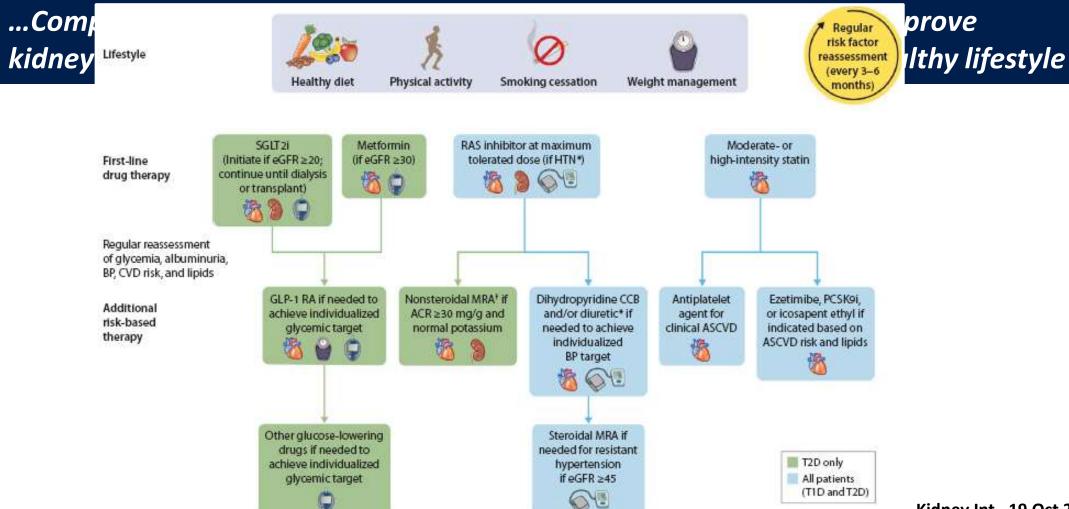
Risk of CV death is significantly increased as eGFR falls below 75 ml/min/1.73 m2

Fox CS, CKD Prognosis Consortium, Lancet 2012

ESKD risk increases as albuminuria progresses or eGFR declines ...and risk is constantly higher in DM vs no-DM

Categorie di rischio Cardio-Renale nel DM tipo 2

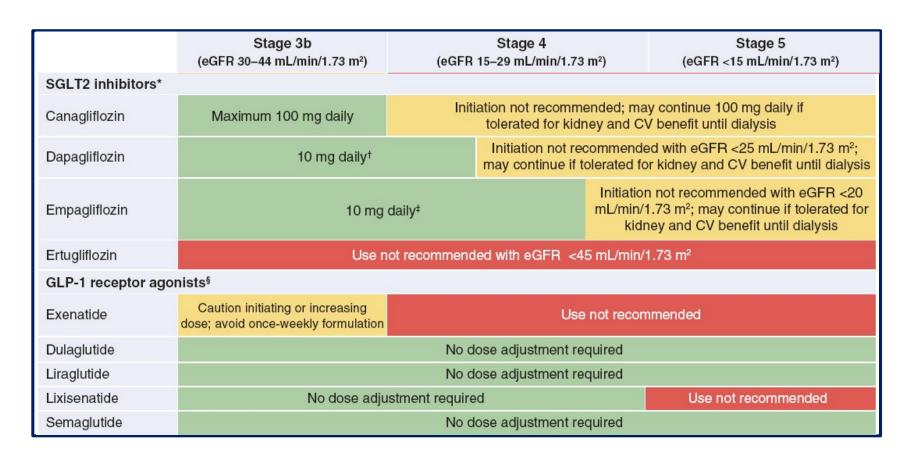
(Linee Guida ESC-EASD 2019)


Molto alto	 Diagnosi di malattia cardiovascolare oppure Presenza di danno d'organo, almeno uno tra: proteinuria o albuminuria severa* (proteinuria >500 o albuminuria >300, o almeno un + all'esame urine) eGFR_{MDRD} ≤30 ml/min/1.73 m² ipertrofia ventricolare sinistra retinopatia oppure almeno tre fattori di rischio maggiori tra: età ≥50 anni ipertensione arteriosa dislipidemia fumo obesità
Alto	 Durata di diabete mellito ≥10 anni senza danno d'organo ma con almeno un fattore di rischio: età ≥50 anni ipertensione arteriosa dislipidemia fumo obesità eGFR_{MDRD} 60-30 ml/min/1.73 m² proteinuria o albuminuria moderata* (proteinuria 150-500 o albuminuria 30-300, o "tracce" all'esame urine)
Moderato	• Età <50 anni con durata diabete mellito <10 anni e senza fattori di rischio

Novel approach to the high risk Diabetic CKD Prevention of Target Organ Damage

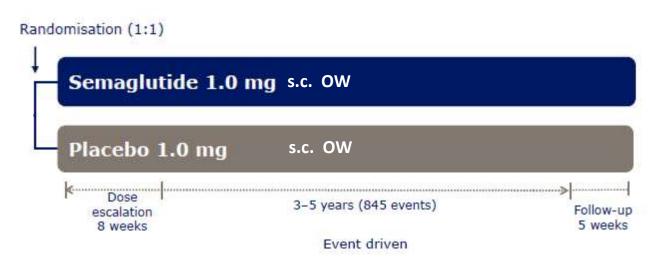
...more than control of glycemia

Consensus report by ADA-KDIGO: Diabetes management in chronic kidney disease



Kidney Int, 19 Oct 2022

Consensus report by ADA-KDIGO: Diabetes management in chronic kidney disease


	Progression of CKD	ASCVD	Heart failure	Glucose- lowering efficacy	Hypoglycemia risk	Weight effects	
Metformin	Neutral	Potential benefit	Potential benefit	High	Low	Neutral	
SGLT2 inhibitors	Benefit ^a	Benefit ^o	Benefit	Intermediate	Low	Loss	
GLP-1 receptor agonists	Benefit ^b	Benefit ^o	Potential benefit	High	Low	Loss	
DPP-4 inhibitors	Neutral	Neutral	Potential risk ^o (saxagliptin)	Intermediate	Low	Neutral	
Insulin	Neutral	Neutral	Neutral	Highest High		Gain	
Sulfonylureas	Neutral	Neutral	Neutral	High	High	Gain	
Thiazolidinediones	Neutral	Potential benefit (pioglitazone)	Increased risk	High	Low	Gain	
α-Glucosidase inhibitors	Neutral	Neutral	Neutral	Intermediate	Low	Neutral	

Consensus report by ADA-KDIGO: Diabetes management in chronic kidney disease

FLOW trial (semaglutide): first dedicated* GLP1-RA renal outcome trial

>3,000 patients with type 2 DKD under RAAS blockade

From Jun 2019 to Aug 2024 (expected)

*DKD as inclusion criterion:

- eGFR 50–75 mL/min + UACR 300–5000 mg/g
- eGFR 25-50 mL/min + UACR 100-5000 mg/g

*Renal Primary Objective:

Time to first occurrence of a composite of persistent eGFR decline ≤50%, reaching ESRD, death from kidney disease or death from CV disease

Editorial

Heart Failure, Diabetes Mellitus, and Chronic Kidney Disease A Clinical Conundrum

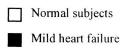
David Aguilar, MD

Type 2 DM occurs in 25% of patients with chronic HF ⇒ worse outcome and in 40% of those hospitalized with acute HF ⇒ worse outcome

Presence of HF complicates the pharmacological treatment of hyperglycemia:

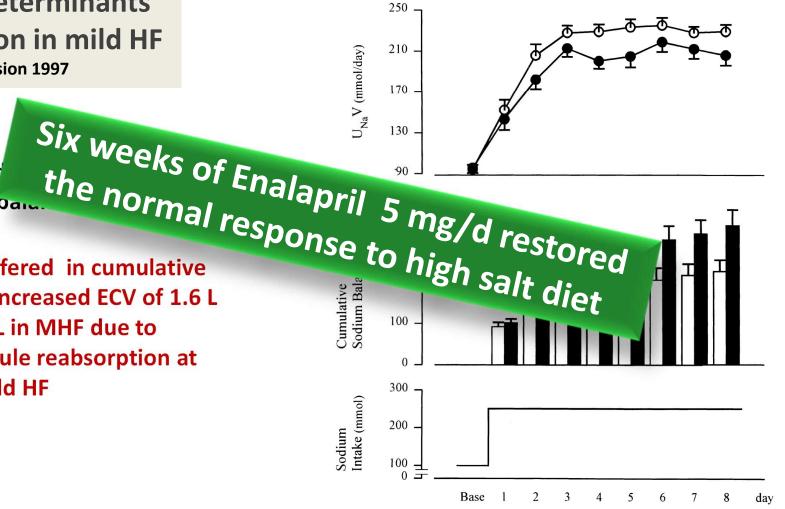
- Thiazolidinediones are associated with greater rates of HF hospitalization
- Sulfonylureas and insulin increase the risk of hypoglycemia

CKD is common in HF (40% to 50%) and severity of renal dysfunction is associated with a **graded increase of death risk**


The kidney in the early stages of HF

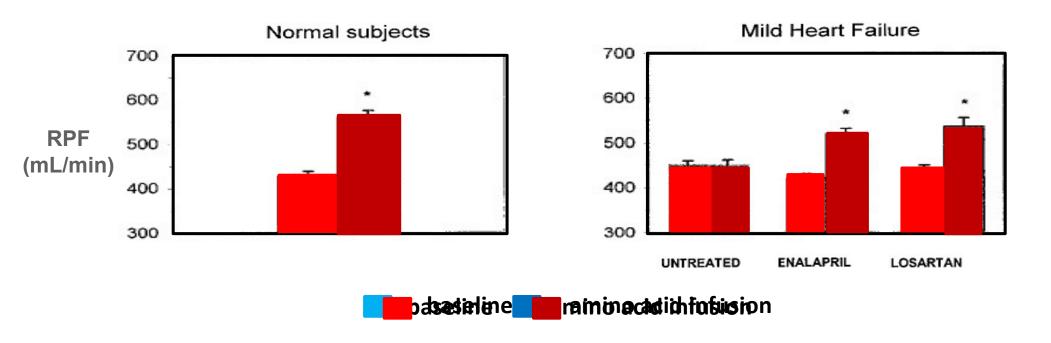
Intrarenal Determinants of Sodium Retention in Mild Heart Failure

Massimo Volpe, Paola Magri, Maria A. E. Rao, Sara Cangianiello, Luca De Nicola,


- 10 untreated asymptomatic HF patients (NYHA class I, LVEF 29.7±2 %)
 with normal renal function (sCreat 1.0 ± 0.06)
- 10 matched normal controls (similar age, BMI, BP, sCreat and salt intake)
- 8 days of high salt intake (15 g/day) vs low salt intake (6 g/day)
- 24h UNaV (salt intake), renal clearances (renal hemodynamics and tubular function)
- Effects of 6-week treatment with Enalapril 5 mg/day

Intrarenal determinants of Na retention in mild HF **Hypertension 1997**

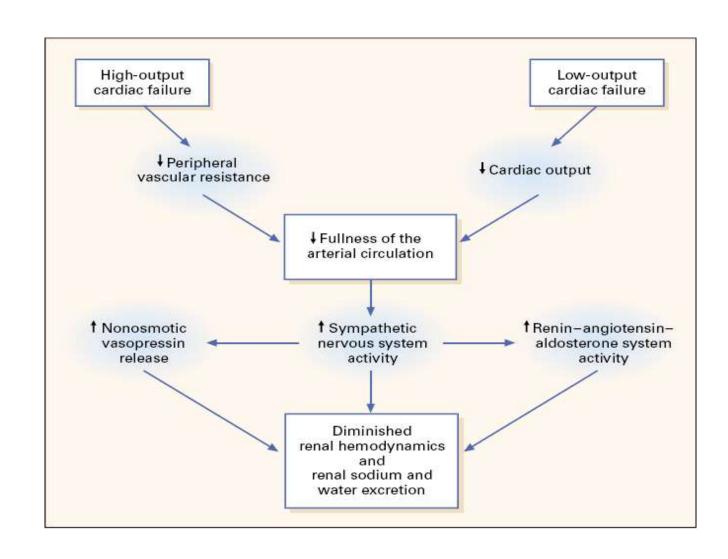
Effects of increased on UNaV and Na+ page


The two groups differed in cumulative Na+ balance with increased ECV of 1.6 L in normal and 2.4 L in MHF due to increased prox tubule reabsorption at high salt diet in mild HF (P<.001)

Early Impairment of Renal Hemodynamic Reserve in Patients With Asymptomatic Heart Failure Is Restored by Angiotensin II Antagonism

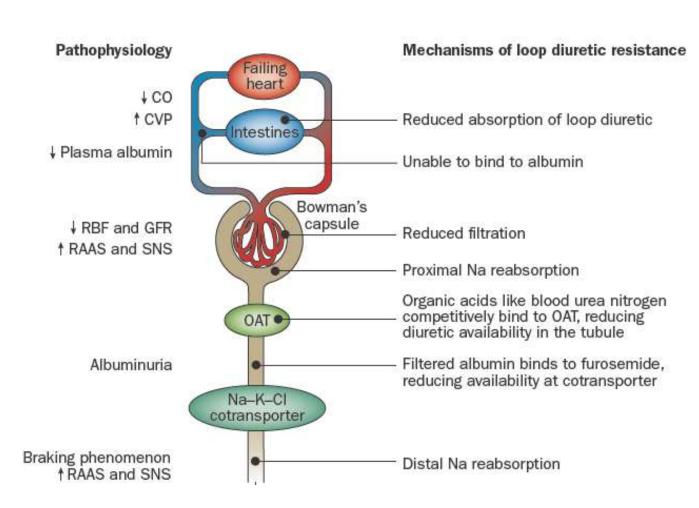
Paola Magri, MD; Maria A.E. Rao, MD; Sara Cangianiello, MD; Vincenzo Bellizzi, MD; Rosaria Russo, MD; Alessandro F. Mele, MD; Michele Andreucci, MD; Bruno Memoli, MD; Luca De Nicola, MD; Massimo Volpe, MD

Circulation 1998



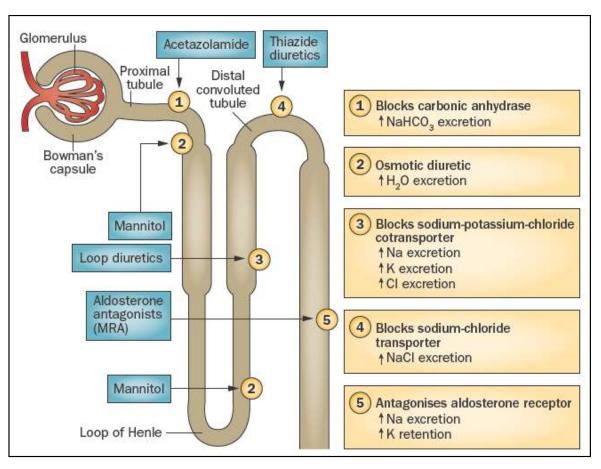
The kidney in the late stages of HF

Overt HF: Mechanisms of salt and water retention


Schrier, NEJM 1999

Overt HF: Diuretic Resistance

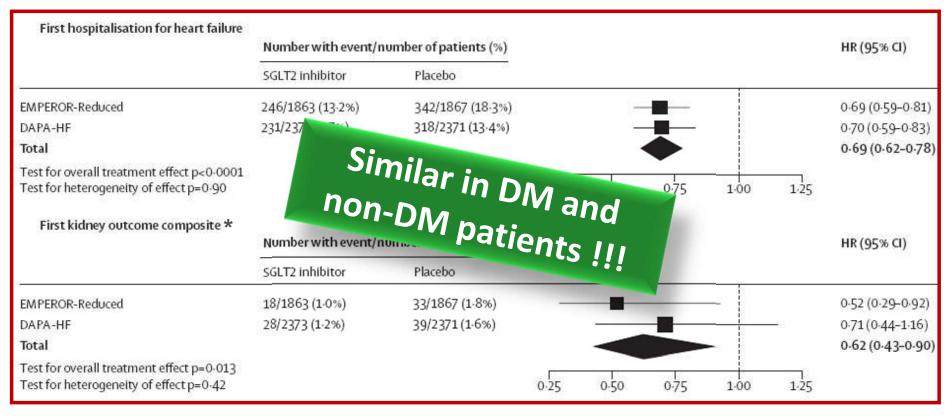
Definition


- Persistent congestion despite furosemide >80 mg/day
- Failure to excrete at least 90 mmol Na within 72 h of oral furosemide 160 mg x 2/day

ter Maaten Nat Rev Card 2015

Multiple Diuretics in HF after efficacious salt restriction

↓ preload ⇒ ↑ heart function ⇒ ↑ renal perfusion



GFR (ml/min)	FUROSEMIDE (mg/die)		
60-30	50-100		
29-15	100-250		
<15	250-500		

Goal of BW decrease: 0.3-0.5 kg/day

SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials Zannad, Lancet 30 Aug 2020



^{*} defined as either sustained eGFR lower than 15 mL/min per 1·73 m², chronic dialysis, or renal transplant

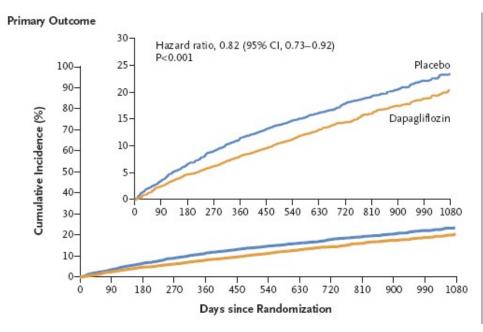
Prevalence and renal prognosis of left ventricular diastolic dysfunction in non-dialysis chronic kidney disease patients with preserved systolic function

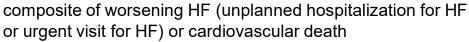
140 ND-CKD patients with LVEF >50% followed for 4.6 yrs (age 66; eGFR 39; 44% diabetics)

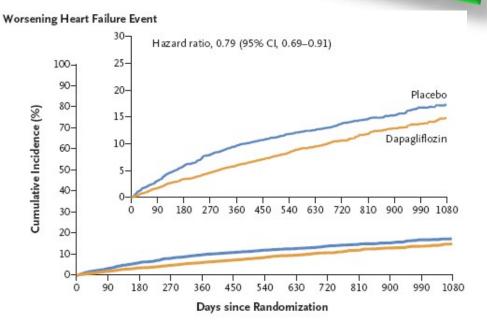
Prevalence of left ventricular diastolic dysfunction categories

Empagliflozin in Heart Failure with a Preserved Ejection Fraction

- 5988 patients with HF and EF >40%
- Mean eGFR 61 and eGFR <60 in 50%
- DM2 49%
- FU 26.2 months

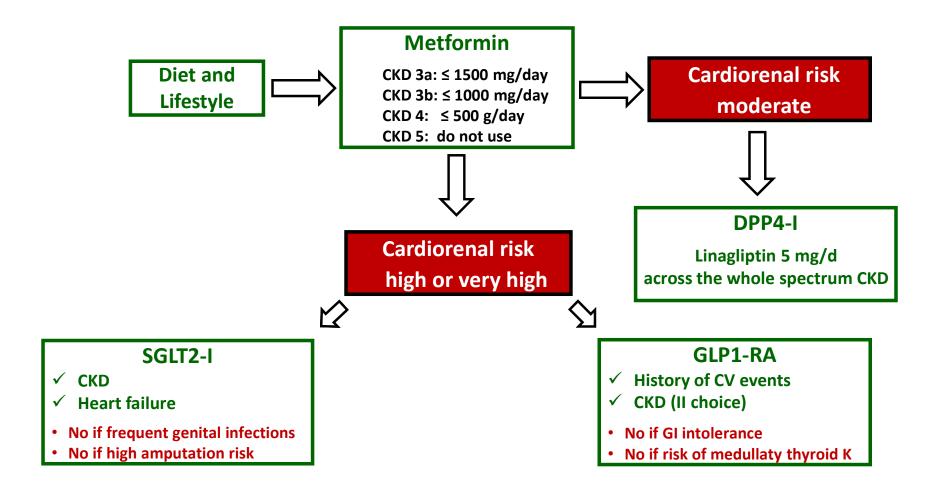



	Empagliflozin (N=2997)		Placebo (N=2991)		Hazard Ratio or Difference (95% CI)	P Value
		events per 100 patient-yr		events per 100 patient-yr		
Primary composite outcome — no. (%)	415 (13.8)	6.9	511 (17.1)	8.7	0.79 (0.69–0.90)	< 0.001
Hospitalization for heart failure	259 (8.6)	4.3	352 (11.8)	6.0	0.71 (0.60-0.83)	
Cardiovascular death	219 (7.3)	3.4	244 (8.2)	3.8	0.91 (0.76–1.09)	
Secondary outcomes specified in hierarchical testing procedure						
Total no. of hospitalizations for heart failure	407	-	541	·	0.73 (0.61–0.88)	< 0.001
eGFR (CKD-EPI) mean slope change per year — ml/min/1.73 m $^2\dot{\uparrow}$	-1.25±0.11	<u> </u>	-2.62±0.11	_	1.36 (1.06–1.66)	< 0.001


Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction

- 6263 patients with HF and EF >40%
- Mean eGFR 61
- DM2 45%
- FU 26.2 months

Similar in DM and non-DM patients !!!



Conclusions

Antihyperglycemic Treatment of DKD

Nephrologist Perspective

Renal Dysfunction in Heart Failure

Nephrologist Perspective

Ejection Fraction

RENAL ANGINA û Rprox **♣** Renal reserve

♣ Natriuretic response

ISCHEMIC KIDNEY FAILURE

₽RPF, GFR ♣Na and water excretion

CONGESTIVE KIDNEY FAILURE

Venous Congestion

1 Diuretic Resistance **☆ CKD/HF progression**

- Low salt diet & RAASI

- Diuretics & SGLT2-I